Pluto Spacecraft Gets Brain Transplant

Artist rendition of New Horizons in the Kuiper Belt. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

[/caption]

Still seven years away from its rendezvous with Pluto, the New Horizons spacecraft was awoken from hibernation for the second annual checkout of all systems. The spacecraft and its team back on Earth will also undergo three months of operations as the New Horizons will make observations of Uranus, Neptune, and Pluto. But the first order of business was uploading an upgraded version of the software that runs the spacecraft’s Command and Data Handling system. “Our ‘brain transplant’ was a success,” says New Horizons Principal Investigator Alan Stern. “The new software – which guides how New Horizons carries out commands and collects and stores data – is now on the spacecraft’s main computer and operating, over a billion miles from home!”

The mission ops team at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, radioed the software load and the commands to start it earlier this week through NASA’s Deep Space Network of antennas to the spacecraft, now just more than 1.01 billion miles (1.62 billion kilometers) from Earth. In the next 10 days the team will beam up additional new software for both the spacecraft’s Autonomy and Guidance and Control systems.

Space Science Mission Operations Center at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
Space Science Mission Operations Center at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

Alice Bowman, New Horizons mission operations manager at APL, says the spacecraft and its computers are healthy. “The new software fixes a few bugs and enhances the way these systems operate, based on what we’ve learned in running the spacecraft in the nearly three years since launch,” she says. “They also configure the onboard systems to be ready to support the Pluto-Charon encounter rehearsals scheduled for next summer.”

New Horizons is more than 200 million miles beyond Saturn’s orbit and more than 11 astronomical units (1.02 billion miles) from the Sun, flying about a million miles per day toward Pluto. Annual Checkout 2 (ACO-2) continues through mid-December; follow its progress through frequent updates on the New Horizons Twitter page.

Source: New Horizons Press Release

Tyson and Sykes Duke Out the Great Planet Debate; Flatow Almost Flattened

A debate today between astronomer Neil deGrasse Tyson and planetary scientist Mark Sykes, moderated by NPR’s Ira Flatow, addressed the issue of Pluto’s planetary status. There was lots of arm-waving and finger-pointing, endless interruptions, disagreements on details big and small, and battling one-liners. The two scientists sat at a table with the moderator between them and Flatow was often obscured by Tyson and Sykes getting in each other’s faces in eye-to-eye confrontation. At one point, Flatow was hit by Tyson’s ebullient arm motions. Yes, it was heated. But it was fun, too. It ended up being not so much a debate between the Pluto-huggers and the Pluto-haters as a disagreement over the lexicon of astronomy and planetary science and, primarily, the definition of a planet. Pluto’s planetary status was definitely not decided here, and the debate concluded with an amicable agree-to-disagree concurrence that the scientific process is an ongoing, evolving practice. But it wasn’t without fireworks.

At the start of the Great Planet Debate, Flatow laid down the ground rules, which included no throwing of perishable items, but that was about the only rule that didn’t get disregarded. Tyson, director of the Hayden Planetarium in New York and host of Nova ScienceNow, and who is in the camp that Pluto is not a planet, began his opening statements with “It’s simple. The word ‘planet’ has lost all scientific value.” He went on, saying “planet” doesn’t tell you much and you have to ask all sorts of questions such as is it big or small, rocky or gaseous, in the habitable zone or not, etc. “If you have to ask twenty questions after I say I’ve discovered a planet, the word has lost its utility.” Tyson said “planet” had utility far back in time when there wasn’t much else we knew about, but we know so much more now. “If we’re going rely on one word and put them all in one pot, what are we doing as scientists and educators? The time has come to discard the useless words and invent a whole new system to respect the level of science we have achieved…We’re in desperate need of a new lexicon to accommodate this knowledge,” he said.

Sykes, director of the Planetary Science Institute, and who believes Pluto should be reinstated as a planet, began, “How we categorize things is part of the science process. It is natural for humans to group things together with common characteristics as a tool to better understand and how they work. This applies to biology and astronomy as well.” He continued that we have discovered planets around other stars and continue to find Kuiper Belt objects that will need to be classified, so classifying objects is not a useless task. The IAU (International Astronomical Union) bit the bullet and decided on a classification, but unfortunately, Sykes said, what they came up with was not very useful.

That was the end of decorum, as Tyson interrupted with, “You wanted a definition. They gave you a definition and now you’re complaining about it!”

“Absolutely,” said Sykes, wanting to continue, but Tyson quickly chimed in, “And let me add…”, where Sykes butted in with “You have to let me start before you add!”

Flatow looked around and said, “I think I’m in a danger zone here.”

Thus began the debate.

Mark Sykes
Mark Sykes

Sykes said that any definition has to have a reason, or a purpose. According to the IAU’s definition, planets have to orbit the sun, they have to be round, and they have to have cleared their orbits, among other things. There was immediate confusion with this definition, which Sykes said was a little “goofy.” In order to be a planet, an object has be bigger the farther away it is from the sun, and it ignores the physical characteristics. He believes it’s useful to group things together that are similar and then have subcategories. So, you have planets, under which are terrestrial, gas giants, ice planets, etc.

Tyson said that even for him, the IAU’s definition falls short of taking the total amount of information to task. “If you only want to call round things planets, that puts Pluto in the same class as Jupiter. I happen to like round things. But what other lexicon might be available to group similar things together?”

“That’s why god made subcategories,” said Sykes. “It’s good to have a good general starting point for classifying things.”

Neil de Grasse Tyson
Neil de Grasse Tyson

Tyson humorously pointed out this debate is big only in the US, which he attributed to Disney’s creation of the lovable, dimwitted cartoon bloodhound named Pluto. School kids, grownups, op-ed writers all say Pluto is their favorite planet. “I am certain that the word ‘plutocracy’ is traceable to what Disney has done, so it’s hard to extricate the sentiment we have for the planet from the dog.”

Sykes said the IAU didn’t expand our perspective on planets, but narrow it. “The planet count went down, and what was the justification of that? The proponents have never given a good explanation of what was motivating that perspective.”

Tyson said numbers aren’t important, but words and definitions are, and we definitely need new ones.

Both scientists gave good arguments for their cause, and since I’m decidedly on the fence with this issue, I found myself leaning towards one option or the other, as each one spoke. Sykes, who wants to see Pluto reinstated as a planet, wants to take what we have and make it better, while Tyson, who thinks Pluto is a comet, wants to start over with new and better words and definitions.

It was an entertaining and educational debate with two well-spoken and intelligent scientists who sometimes weren’t very polite, however. (Sykes said, “When were’ not fighting we get along fine.”) The most important thing, they both agreed though, was that scientists are actually talking about this issue in the public eye and people are interested. But more importantly, the public is seeing the scientific process in action. They said this debate shouldn’t be about making things easy, or worrying about “not confusing the public.” Learning science shouldn’t be rote memorization of lists of objects, but a discussion of how objects are similar and different. “My recommendation to school teachers,” said Tyson “is to get the notion of counting things out of your system and comb the solar system for the richness of objects. Ask about different ways to combine the different objects in our solar system and have a discussion about their different properties.”

The debate will be available online, and we’ll post a link to it here when it is.

Sykes ended with his closing argument: “We both have issues with what happened with the IAU, its part of an ongoing presentation, but the important things is that the public gets to see the debate, and it’s not a battle over what list and what numbers you have, but the debate of the issues. That’s more important whether either of us have convinced you of one perspective. Science in this country is too much memorizing lists promulgated by those in authority. This is helping to expose the messy side of science. This debate is good and positive.”

Tyson ended by saying how charmed he is at the level of public interest in this subject. “How many sciences get to have their issues debated in the op-ed pages and comics?” He said he was happy with the word “planet” until all the data started pouring in from our explorations. “There should be a way to celebrate a new way to think about things. There ought to be a way to capture that” he said.

Obviously, this is not the last word on the subject from either scientist, or either side of the debate.

But that’s a good thing.

For more info on the Great Planet Debate.

The Pluto Revolt: Leading Astronomers Want the Plutoid to be Reinstated as a Planet

Artist impression of Pluto and Charon (NASA)

[/caption]
If you thought Pluto was going quietly and giving up its planetary status without a fight, think again. Leading astronomers have spoken out against the International Astronomical Union (IAU) decision to classify the dwarf planet as a “Plutoid,” described by some critics as a “celestial underclass.” The IAU decision was made after it was deemed that Pluto cannot be called a “planet.” Although the spherical rocky body can tick most attributes of being a “planet,” the IAU pointed out that Pluto is too small to be capable of gravitationally clearing its own orbit (plus it periodically crosses the path of Neptune’s orbit); it should therefore be called a “dwarf planet.” Back in June however, the IAU gloriously announced that Pluto should be now be re-classified as a “Plutoid” and any other Pluto-like planets should follow suit. But on Thursday, at a major conference in Maryland, leading astronomers will refute the Plutoid classification saying the IAU re-naming is confusing and unworkable

It may be the smallest planet in the Solar System a Plutoid, but this little spherical rock is causing a lot of noise down here on Earth. In 2006, the IAU re-classified the definition of a planet to distinguish between the differences between the larger known planets with the smaller rocky bodies (such as the increasing number of observed Kuiper Belt objects). There are three defining characteristics of what a planet should be:

  1. It is in orbit around the Sun.
  2. It has sufficient mass so that it assumes a hydrostatic equilibrium (nearly round) shape.
  3. It has “cleared the neighbourhood” around its orbit.

Pluto fulfils #1 and #2, but fails on #3, it is simply too small to gravitationally clear its own orbit. So Pluto was caught right in the middle of the “planetary classification debate ’06” and incidentally failed on one count. If any object fulfils the first two planetary criteria, but fails on the last, the IAU would classify the celestial body as a “dwarf planet.” To complicate matters, Pluto also travels inside the orbit of the gas giant Neptune periodically, giving it the extra classification of being a Trans-Neptunian Object (TNO). Although Pluto is a “dwarf” by Solar System standards, it is one of the largest Kuiper Belt Objects (KBO) in the outer Solar System; a true King amongst dwarfs.

Pluto has had a hard few months after getting kicked out of the planetary club.
Pluto has had a hard few months after getting kicked out of the planetary club.

So, for two years, Pluto was stuck in no-man’s land. It had been re-classified as a dwarf planet and astronomy teachers had to re-write their teaching material. Websites like NinePlanets.org had to scrub the 9 and replace it with an 8; but also had the foresight to buy “EightPlanets.org.” Times were a little messy for Pluto. Then, in June this year, the IAU seemed to want Pluto to feel a little better. Not only was it the King of the Kuiper Belt, it would have an entire army of Pluto-like dwarf planets named after it. The IAU created the “Plutoid,” and as if to avoid any more confusion, it gave the classification a no-nonsense definition:

Plutoids are celestial bodies in orbit around the Sun at a semi major axis greater than that of Neptune that have sufficient mass for their self-gravity to overcome rigid body forces so that they assume a hydrostatic equilibrium (near-spherical) shape, and that have not cleared the neighbourhood around their orbit. Satellites of plutoids are not plutoids themselves. – The IAU definition of a Plutoid (June 11th 2008).

Got that? Good. But not everyone was happy, least of all Pluto. T-shirts have even been printed with the quote: “It’s okay Pluto, I’m not a planet either” (and yes, I have one), for anyone wanting to show their support for the struggling rocky body.

So this Thursday, some very prominent astronomers will take their case to the “The Great Planet Debate: Science as Process” conference at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. To cut a long story short, they want Pluto to be reinstated as a planet, thereby abandoning the term “Plutoid.”

Dr David Morrison, director of the NASA Lunar Science Institute in California, makes the point that if the largest planets in our Solar System can be called Gas “Giants” then it should be fine to call Pluto a “Dwarf” Planet. But in the current IAU classification, Pluto cannot be called a planet.

It has never before been necessary for any organisation to define a word that has been in common every day use so I see no reason why it was necessary on this occasion. Astronomers use adjectives such as giant and dwarf to describe different subclasses of objects like planets, stars and galaxies, so why could Pluto not remain as a dwarf planet just as Jupiter is a giant planet. Also, around 90 per cent of the planets we know now are outside our solar system, but under the International Astronomical Union’s definition, they cannot be classed as planets.” – Dr David Morrison

So it would seem the classification of “planet” will remain a very exclusive club of eight under the IAU rules; only Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune will have this honour unless the scientists at the Great Planet Debate conference can convince the IAU otherwise. Mark Sykes, from the Planetary Science Institute, argues that only #2 of the IAU planet definition need be applied; it is therefore the shape, or roundness, of the object that defines whether it can be called a planet or not. If this definition were applied, the Solar System would expand to include 12 planets. This worries some traditional thinkers at the IAU. As our observational techniques improve, more planet candidates will be discovered, therefore making the Solar System wildly different than what it is now.

But if there are more “planets” out there, why shouldn’t more planets be added to the official eight we currently have? It sounds like the Pluto debate is far from over and it will be interesting to hear what the delegates have to say on Thursday…

Source: Telegraph

2012: Planet X is not Nibiru

The Solar System’s outer reaches still contain many minor planets yet to be discovered. Ever since the search for Planet X began in the early 20th Century, the possibility of a hypothetical planet orbiting the Sun beyond the Kuiper Belt has fuelled many Doomsday theories and speculation that Planet X is actually the Sun’s long lost binary sibling. But why the fear about the Planet X/Doomsday combination? Surely Planet X is just an unknown, hypothetical object and nothing sinister?

Related 2012 articles:

As I’ve previously discussed in “2012: No Planet X“, doomsayers have linked the modern day search for Planet X, the ancient Mayan 2012 Prophecy and the Sumerian mythical planet Nibiru, culminating in bad news for December 21st 2012. However, the astronomical evidence for these links is seriously flawed.

Yesterday (Wednesday, June 18th), Japanese researchers announced news that their theoretical search for a large mass in the outer Solar System has produced results. From their calculations, there might just be a planet, possibly a bit bigger than a Plutoid but certainly smaller than Earth orbiting beyond 100 AU from the Sun. But before we get carried away, this is not Nibiru, this is not proof of the end of the world in 2012; it is a new and very exciting development in the search for minor planets beyond the Kuiper Belt…

In a new theoretical simulation, two researchers have deduced that the outermost reaches of the Solar System may contain an undiscovered planet. Patryk Lykawka and Tadashi Mukai of Kobe University have published a paper in the Astrophysical Journal detailing a minor planet that they believe may be interacting with the mysterious Kuiper Belt.

Kuiper Belt Objects (KBOs)
Large bodies are known to exist beyond the orbit of Pluto, like Sedna (NASA)

The Kuiper Belt occupies a huge region of space, approximately 30-50 AU from the Sun. It contains a vast number of rocky and metallic objects, the largest known body being the dwarf planet (or “Plutoid”) Eris. It has been known for many years that the Kuiper Belt has a few strange characteristics that may signal the presence of another large planetary body orbiting the Sun beyond the Kuiper Belt. One such feature is the aptly named “Kuiper Cliff” that occurs at 50 AU. This is an abrupt end to the Kuiper Belt, very few Kuiper Belt objects (or KBOs) have been observed beyond this point. This cliff cannot be attributed to orbital resonances with massive planets such as Neptune, and there doesn’t appear to be any obvious observational error. Many astronomers believe that such a sharp cut-off in KBO population may be due to an as-yet to be discovered planet, possibly as large as Earth. This is an object Lykawka and Mukai believe they have calculated to exist.

Eight of the largest trans-Neptunian objects (Wikimedia Commons)

This research predicts a large object, 30-70% the mass of the Earth, orbiting at a distance of around 100-200 AU from the Sun. This object may also help explain why some KBOs and tran-Neptunian objects (TNOs) have some strange orbital characteristics (such as Sedna).

Ever since Pluto was discovered in 1930, astronomers have been looking for another more massive body that could explain the orbital perturbations observed in the orbits of Neptune and Uranus. This search became known as the “search for Planet X”, which literally meant the “search for an as yet unidentified planet.” In the 1980’s these perturbations were put down to observational error. Therefore, the modern-day scientific search for Planet X is the search for a large KBO or a minor planet beyond. Although Planet X may not be larger than the mass of the Earth, researchers are still very excited about finding more KBOs, possibly the size of a Plutoid, possibly a little bigger, but not much bigger.

The interesting thing for me is the suggestion of the kinds of very interesting objects that may yet await discovery in the outer solar system. We are still scratching the edges of that region of the solar system, and I expect many surprises await us with the future deeper surveys.” – Mark Sykes, Director of the Planetary Science Institute in Arizona.

Planet X is not scary
The orbit of the hypothetical planet Nibiru (Sitchin.com)
So where does Nibiru come in? Back in 1976 a controversial book called “The Twelfth Planet” was written by Zecharia Sitchin. Sitchin had interpreted some ancient Sumerian cuneiform texts (the earliest known form of writing) as a literal translation of the origin of humankind. These 6000 year old texts apparently reveal that an alien race known as the Annunaki travelled to Earth on a planet called Nibiru. It’s a long and involved story, but in a nutshell, the Anunnaki genetically modified primates on Earth to create homo sapiens to be their slaves. (I just worked out where the storyline for Kurt Russell’s 1994 movie Stargate probably came from…)

When the Anunnaki left Earth, they let us rule the planet until they return. All this may seem a little fantastical, and perhaps a little too detailed when considering it is a literal translation from 6000 year old texts. Sitchin’s work has been disregarded by the scientific community as many of his methods of interpretation are considered imaginative at best. Nevertheless, many people have taken Sitchin’s work literally, and believe Nibiru (in its highly eccentric orbit around the Sun) will be returning, possibly as soon as 2012 to cause all sorts of terror and destruction here on Earth. It is important to note here that I am not calling into question any archaeological, spiritual or historic evidence for Nibiru, I am simply pointing out the link between the 2012 Doomsday Planet X theory is based on very dubious astronomical “discoveries”; if this is the case, how can Planet X be considered to be the embodiment of Nibiru?

Then there’s the IRAS “discovery of a brown dwarf in the outer Solar System” in 1984 and the “NASA announcement of a 4-8 Earth mass planet travelling toward Earth” in 1993. Doomsayers (often with a book to sell) cling on to these astronomical discoveries as proof that Nibiru is in fact the Planet X astronomers have been searching for over the last century. Not only that, by manipulating the facts about these scientific studies, they “prove” that Nibiru is travelling toward us, and by 2012, this massive body will pass through the inner Solar System, causing all sorts of gravitational damage. For more information on this topic, see “2012: No Planet X.”

In its purest form, Planet X is an unknown, theoretically possible planet orbiting peacefully beyond the Kuiper Belt. If yesterday’s announcement does lead to the observation of a planet or Plutoid, it will be an incredible discovery that will help to shed some light on the evolution and characteristics of the mysterious outer reaches of the Solar System.

But as I write, I can guarantee that doomsayers are adapting this new research to be used as support for their nonsensical theories that Planet X is in fact Nibiru, and it’s coming in our direction by 20 12 2012. Why do I get the feeling we’ll still be here in the year 2013?

Leading image credits: MIT (supernova simulation), NASA (Pluto and Charon). Effects and editing: myself.

Pluto’s Moons, Nix and Hydra, may have been Adopted

The discovery images of Nix (and Hydra) obtained by the Hubble Space Telescope. Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI)

 

How many moons does Pluto have? The mini-moons of Pluto, Nix and Hydra, were discovered in 2005 (but named in 2006) during an observation campaign by the Hubble Space Telescope. The discovery of these mini-moons increase the number of natural satellites orbiting Pluto to three (including larger moon Charon). But where did these satellites come from? The current accepted theory on the formation on the large moon, Charon, is much like the theory supporting the creation of Earth’s Moon. It is thought that a large impact between two Large Kuiper Belt Objects chipped Charon away from a proto-Pluto, putting the chunk of Pluto mass into orbit. Over the years, tidal forces slowed the pair and Charon was allowed to settle into its present-day orbit. Recent theory suggests that Nix and Hydra are a by product of this collision, merely shattered fragments of the huge impact. But there are problems with this idea. Could Nix and Hydra have come from somewhere other than the Pluto-Charon impact?

The orbits of Plutos moons, Charon, Nix and Hydra (credit: NASA)
The small moons that orbit the Large Kuiper Belt Object (formerly classified as a planet) can be found about 48,700 kilometers and 64,800 kilometers from the surface of Pluto. The closest moon is called Nix and the farthest, Hydra. Nix has an orbital resonance of 4:1 with Charons orbit and the larger moon Hydra has a resonance of 6:1 (i.e. Nix will orbit Pluto once for every four of Charons orbits; Hydra will orbit Pluto once for every six of Charons orbits).

The reasons behind these mini-moon orbits are only just beginning to be understood, but it is known that their resonances with Charons orbit is rooted way back during the Pluto-system evolution. If we assume Hydra and Nix were formed from a massive Kuiper Belt Object collision, the easiest explanation is to assume they are whole fragments from the impact caught in the gravity of the Pluto-Charon system. However, due to the highly eccentric orbits that would have resulted from this collision, it is not possible that the two little moons could have evolved into a near-circular orbit, in near-corotational resonance with Charon.

So, could it be possible that the moons may have formed from the dust and debris resulting from the initial collision? If there was enough material produced, and if the material collided frequently, then perhaps Nix and Hydra were born from a cold disk of debris (rather than being whole pieces of rock), eventually coalescing and forming sizeable rocky moons. As there may have been a disk of debris, collisions with the orbiting Nix and Hydra would have also reduced any eccentricity in their orbits.

But there is a big problem with this theory. From impact simulations, the post-impact disk of debris surrounding Pluto would have been very compact. The disk could not have reached as far as the present-day orbits of the moons.

One more theory suggests that perhaps the moons were created in a post-impact disk, but very close to Pluto, and then through gravitational interactions with Charon, the orbits of Nix and Hydra were pulled outward, allowing them to orbit far from the Pluto-Charon post-impact disk. According to recent computer simulations, this doesn’t seem to be possible either.

To find an answer, work by Yoram Lithwick and Yanqin Wu (University of Toronto) suggest we must look beyond the Pluto-Charon system for a source of material for Nix and Hydra. From simulations, the above theories on the creation of the small moons being started by material ejected from a large collision between two Large Kuiper Belt Objects (creating Pluto and Charon) are extremely problematic. They do not correctly answer how the highly eccentric orbits Nix and Hydra would have from a collision could evolve into the near-circular ones they have today.

Lithwick and Wu go on to say that the circular, corotational resonant orbits of the two moons could be created from a Plutocentric disk of small bits of rock scooped up during Pluto’s orbit around the Sun. Therefore Nix and Hydra may have been formed from the rocky debris left over from the development of the Solar System, and not from a collision event creating Charon. This may hold true for the countless other Kuiper Belt Objects in orbit in the far reaches of the Solar System, no impact is necessary for the creation of the tiny moons now thought to be their satellites.

It is hoped that the New Horizons mission (launched January 21st, 2006) to the far reaches of the Solar System will reveal some of the questions that remain unanswered in the depths of our mysterious Kuiper Belt. Hopefully we will also find out whether Nix and Hydra are children of Pluto and Charon… or whether they were adopted.

Source: arXiv

Podcast: Pluto and the Icy Outer Solar System

2007-1126pluto.thumbnail.jpg

It’s been a long journey, 64 episodes, but now we’re back where we began: Pluto. Last time we talked about how Pluto lost its planethood status, so we won’t go over all that again. This time we’re going to talk about Pluto, its moons, the Kuiper belt, and the other icy objects that inhabit the outer Solar System.
Click here to download the episode

Pluto and the Icy Outer Solar System – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Go here if you’d like some Pluto pictures.

Pluto’s Moon Charon has Geysers Too

2007-0717charon.thumbnail.jpg

It’s only been a few months since the discovery of ice geysers on Saturn’s moon Enceladus, and now this dynamic process is turning up all over the Solar System. Astronomers think they’ve found a similar phenomenon on one of the strangest places: welling up from the surface of Pluto’s moon Charon.

The discovery was made using the Gemini Observatory’s adaptive optics system from atop Mauna Kea in Hawaii. The telescope picked out large deposits of ammonia hydrates and water crystals spread out across the surface of the icy moon.

Scientists think that water mixing with ice deep underneath Charon’s surface is causing this material to push up through the moon’s ultra-cold surface. This action could be happening quickly, taking just a few hours or even days. Over time, this process could give Charon a new surface one millimetre thick every 100,000 years. Of course, if Charon has this process going on, something similar could be happening across the Kuiper Belt.

The discoverers believe there’s a dynamic process going on here because Charon’s surface doesn’t appear to be “primordial ice”; ice that was created during the formation of the Solar System. Instead, it’s much more crystalline in appearance, and must have formed recently.

The next step will be to examine other Kuiper Belt objects, like Quaoar and Orcus – both are larger than 500 km (310 miles) across.

Of course, the best thing would be to send a spacecraft and see these bodies up close.

It’s very convenient, then, that NASA’s New Horizon spacecraft is on its way, and will make a flyby in about a decade.

Original Source: Gemini News Release

Go here if you’d like some pictures of Pluto.

Sorry Pluto, Eris is Bigger

2007-0613eris.thumbnail.jpg

For those of you hoping that Pluto the dwarf planet would get its full planethood status restored again, the news isn’t looking good. The most recent observations peg the newly discovered dwarf planet Eris as being 27% more massive. And if Pluto is a planet again, shouldn’t the even larger Eris get to be a planet too? Should we have 8 planets, or 10 or 20? Oh, it’s madness.

The latest observations were made by discoverer Mike Brown and his planet hunting team. They made detailed observations using the Hubble Space Telescope and Keck Observatory, and concluded that Eris has a density of about two grams per cubic centimetre; a mixture of ice and rock that matches the density of Pluto. Since its diameter is 2,400 km (1,500 miles), that pushes it above the mass of Pluto.

And Eris is much colder. Since it’s 97 astronomical units (the distance from the Earth to the Sun) away from the Sun, its average temperatures hover around -240 degrees Celsius (-400 degrees Fahrenheit). During its elliptical orbit, the dwarf planet can sweep in getting as close as 38 astronomical units.

Researchers think the planet is covered in a layer of methane that seeped out from inside the planet and then froze on the surface. This methane has then undergone a chemical transformation in the solar radiation, turning yellowish. The planet also has a moon, 150-km (93-mile) diameter Dysnomia. It orbits Eris every 16 days.

Original Source: Caltech News Release

Here are some interesting Pluto facts.

Torrent of New Jupiter Images from New Horizons

2007-0503europa.thumbnail.jpg

Although its primary target will be Pluto, NASA’s New Horizons spacecraft is taking the time to do a little science along the way. During its recent Jupiter flyby, the spacecraft was able to test out its scientific instruments as a dress rehearsal for its final Pluto encounter. NASA held a big press conference this week, and released dozens of new images and scientific findings gathered by New Horizons.

New Horizons made its closest approach to Jupiter on February 28, 2007 when it came within 2.3 million km (1.4 million miles) of the giant planet. As part of this flyby, it captured the closest ever view of Jupiter’s “Little Red Spot”, detailed images of its faint rings, and events on its moons. It made a total of 700 observations, and it’s now transmitting that data back to Earth – 70% of the 34 gigabits of data have been returned so far.

The spacecraft made many discoveries. Here are a few examples. It’s view of “Little Red” shows how these kinds of vast storms evolve in Jupiter’s high atmosphere. It showed how the planet’s rings change quickly, over the course of weeks and months and revealed the effect of a recent impact. It made several observations of Jupiter’s moon Io, with its volcanic plumes scattering lava across its surface.

New Horizons is the fastest spacecraft ever launched. This Jupiter flyby gave it an additional speed boost, and helped put it on target to reach Pluto in 2015.

All the images presented by NASA are available here.

Original Source: NASA News Release

More Images from New Horizon’s Jupiter Flyby

Jupiter captured by New Horizons. Image credit: NASA/JPL/JHUAPLEven though New Horizon’s Jupiter flyby happened weeks ago, scientists are only just starting to crunch through the data sent back. They’re revealing better and better images of Jupiter, taken by the spacecraft’s powerful instruments. The image attached to this story was taken using New Horizon’s LEISA infrared camera. It’s a false colour photograph – not what you’d actually see if you were looking at Jupiter – but the fine details in the image are impressive.
Continue reading “More Images from New Horizon’s Jupiter Flyby”