Australian Observatory Captures New Nova In Sagittarius

Hold on to your hats… It’s happening again. According to AAVSO Special Notice #105 released on April 19, another possible nova event is now occurring in Sagittarius. Through their quick actions, Macedon Ranges Observatory in Central Victoria, Australia was on top the alert and imaging.

AAVSO Special Notice #105
Possible Nova in Sgr
April 19, 2008

The CBAT Unconfirmed Observations Page listed
a possible nova in Sgr. After a call on VSNET-ALERT,
Ernesto Guido and Giovanni Sostero (Remanzacco
Observatory) used a robotic telescope near Mayhill, NM
to confirm the new object (VSNET-ALERT 10077).
They provide accurate coordinates (using UCAC2) as:
18:05:58.90 -27:13:56.3 J2000
No magnitude is given by Guido and Sostero, but
the original discovery magnitude was 8.4C on 20080418.
No star close to this position is seen in the
USNO-B nor 2MASS catalogs. Kato (VSNET-ALERT 10075)
indicates that this new outbursting object has
a pre-discovery observation by ASAS:
20080416.3048 11.671V (ASAS (Pojmanski, G. 2002, Acta Astron. 52,397)) but was not visible 3 days earlier.

The quick acting staff at MRO immediately went to work imaging the area and comparing their results to the sky survey plates. The results are clear… Yet another new nova has been discovered.

Says Observatory Director Bert Candusio: “This was as exciting as the first Alert exercise done by the MRO only a few days ago. Although MRO tried to get the observation to the AASVO, we decided to supply the images to Universe Today so the general public could get the first glimpses of this exciting new object.”

Once the coordinates were in place, Joe Brimacombe immediately set to work with a 12.5″ Ritchey Chretien Optical Systems telescope and began imaging the target area with a STL 6303 CCD camera. Within 90 minutes the images were processed and the painstaking process of comparison began. By isolating certain star patterns within the area, the nova event was quickly confirmed and revealed in above comparison image (click to enlarge).

In this day and age of strictly professional observations that only belong to a specific community, it’s fantastic to be able to have a group of scientists share with the general public up-to-the minute findings. We applaud their work!

Universe Today Exclusive – Cygnus Nova V2491 Revealed for Readers

Clouds got you down? No chance of seeing V2491 Cyg because of the weather? Are you sleeping when Cygnus is up? One of the most beautiful facets of having an astronomer around is being able to share information with other observatories around the world and put them to work. This time the job was handed to our friends in Australia who were able to produce for us an exclusive look at an elusive nova.

In trial test on image acquisition utilizing the combined resources of Macedon Ranges Observatory and its resident astronomers, they were able to nab the nova in less than 30 minutes from notice being given. The image was then processed, labeled and returned again halfway around the world within hours for UT readers to enjoy.

On 15 April 2008 from 10.50 to 11.40 UT, Joseph Brimacombe from Cairns, Queensland, Australia was busy employing remote technology located at 32 degrees 54 minutes North; 15 degrees 32 min West and recording the nova with an SBIG ST-L-1001 CCD camera. Coupled with a 20″ Ritchey-Chretien Optical System, 8 separate exposures of 5 minutes duration were taken in white light, and the results speak for themselves.

By comparing the zoom map of the area presented in the original Cygnus Nova Alert it’s easy to see the identifying line of three stars which helps orient the viewer to the general area. As predicted, Cygnus Nova V2491 easily stands out amongst the background stars.

Says Observatory Director, Burt Candusio: “The exercise was primarily designed to test the imaging and response capabilities of M.R.O resident astronomers. If another similar event presents itself, we would now be confident in our capabilities of imaging a target effectively and quickly from any part of the globe. A most pleasing outcome for all concerned and especially for Joseph Brimacombe.”

But the thrill was nothing compared to Joe’s own success: “Trapped under the mostly cloudy Cairns skies, I was remotely imaging the running chicken nebula (NGC 2944) at the Macedon Range Observatory and the Pinwheel galaxy (M101) at New Mexico Skies, when my good mate Bert Candusio notified me of a new nova (V2491) in Cygnus. At the time, it was 60 degrees below the horizon at the MRO, but 50 degrees above the horizon at NMS, so I slewed my 20 inch RCOS at NMS to the co-ordinates Bert had provided. There was just sufficient time before dawn to snap 8 x 5 min luminance frames of a dense star field. Both Bert and I were delighted to find the nova near the middle of the frame. We estimate the magnitude at around 10. The beauty of NGC 2944 and M101 was not a match for the excitement of imaging an acute stellar explosion for the first time!”

In the case of V2491 Cyg, the only thing better than having the stars up above is having friends down under. Our thanks go to our friends at Macedon Ranges Observatory!

Mysterious Omega Centauri Dazzling in Infrared: New Spitzer Observations

Omega Centauri - in infrared and optical wavelengths (NASA/NSF)

By combining ground-based optical observations with space-borne infrared images from Spitzer, an incredible new view of mysterious Omega Centauri has been revealed. Astronomers have had a hard time identifying what type of galaxy Omega Centauri actually is, so any new information on the cluster of millions of stars is needed. By combining observations in different wavelengths, stars of different ages are highlighted, possibly aiding our understanding about the origins of Omega Centauri and answer the question: Why is this galaxy so strange?

As discussed in an article last week, Omega Centauri is of particular interest to astrophysicists. Over the years this strange collection of stars has been classified as a single star (by Ptolemy), a nebula (by Halley in 1677) and a globular cluster (by Herschel in the 1830’s). Now it is believed that this dwarf galaxy may be a survivor of an ancient collision with the Milky Way which stripped away its outermost stars. This is why it may look like a globular cluster now, but doesn’t have globular cluster characteristics. For a start Omega Centauri is too big (ten times bigger than the largest globular clusters) and it contains stars of many generations (globular clusters usually contain one generation). Recent observations also show a very fast rotating galactic core, revealing the presence of an intermediate-size black hole… the missing link connecting stellar black holes with supermassive black holes. Exciting stuff.

Omega Centauri in optical and infrared wavelengths (NASA/JPL-Caltech/ NOAO/AURA/NSF)

Putting the scientific implications to one side for now, I can’t help but stare at this stunning view of this interesting cluster of star systems. I’m used to monochromatic images of space with some false-colour thrown in for good measure; this image seems to be different. Very quickly we are able to gain an insight to the dispersion of star generations, just by looking at the image. A quick glance shows the majority of young stars are clustered toward the middle (the blue stars), older red giants located around the outside of the galaxy (the red/yellow stars).

Detail of Omega Centauri stars - highlighting a Spitzer red giant and some Blanco young stars (NASA/JPL-Caltech/ NOAO/AURA/NSF)

According to the NASA news release, where green and red dots overlap, yellow dots appear. These are NASA Spitzer Space Telescope stars observed in infrared. We know that these emissions come from old, large and dusty stars, the red giants. The blue dots are younger stars, much like our Sun, as observed in optical and near-infrared wavelengths by the National Science Foundation’s Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. I’ve included a little section from the main image with the two types of star ringed and annotated (pictured).

These new Spitzer observations show very little dust around any of the dimmest red giants and the space between the stars also does not seem to contain much dust (as interstellar dust would glow infrared radiation as nearby stars heat it). Astronomers have concluded that any dust within the cluster is quickly destroyed or lost from the galaxy.

Source: NASA

SuperWASP are Super Planet-Finding Observatories

The United Kingdom’s Wide Area Search for Planets, known as SuperWASP consists of two 8-camera robotic observatories that cover both hemispheres of the sky. In the past 6 months an international team of astronomers have used these unique observatories to discover 10 new extra-solar planets, making SuperWASP the most successful planet-hunting observatory in the world. The discovery of these planets was announced on April 1 by Dr. Don Pollacco of Queen’s University in Belfast at the Royal Astronomy Society’s National Astronomy Meeting in the UK.

All told, scientists have found more than 270 extrasolar planets since the the early 1990s. Most of these are detected through their gravitational influence on the star they orbit. As a planet orbits a star, it tugs the star back and forth. However, making these discoveries depends on looking at each star over a period of weeks or months, making the pace of discovery fairly slow.

But SuperWASP uses a different method. The two sets of cameras watch for events known as transits, where a planet passes directly in front of a star and blocks out some of the star’s light, so from the Earth the star temporarily appears a little fainter. The SuperWASP cameras work as robots, surveying a large area of the sky at once and each night astronomers have data from millions of stars that they can check for transits. The transit method also allows scientists to deduce the size and mass of each planet.

SuperWASP-North is located on the island of La Palma, just off the Northwestern coast of Africa, and SuperWASP-South is at the southern tip of Africa at the South African Astronomical Observatory near Sutherland, South Africa.

SuperWasp Cameras.  Image Credit:  SuperWASP project & David Anderson

The observatories are quite simple, but effective. They use 8 high quality digital cameras to take pictures of the sky and simply measure any changing brightness of the stars.

Each possible planet found using SuperWASP is then observed by astronomers working at the Nordic Optical Telescope on La Palma, the Swiss Euler Telescope in Chile and the Observatoire de Haute Provence in southern France, who use precision instruments to confirm or reject the discovery.

45 planets have now been discovered using the transit method, and since they started operation in 2004 the SuperWASP cameras have found 15 of them, which makes SuperWASP by far the most successful discovery instruments in the world. The SuperWASP planets have a variety of masses, between a middleweight 0.5 and a huge 8.3 times that of Jupiter. A number of these new worlds are quite exotic. For example, a year on WASP-12B (its orbital period) is just 1.1 days. The planet is so close to its star that its daytime temperature could reach a searing 2300 degrees Celsius.

Dr. Pollacco is delighted with the results. “SuperWASP is now a planet-finding production line and will revolutionize the detection of large planets and our understanding of how they were formed. It’s a great triumph for European astronomers.”

Original News Source: Royal Astronomy Society press release

The World’s Most Powerful Telescope Sees First Light

ngc2770.thumbnail.jpg

First light is a big deal. That’s when a new observatory opens up for the first time and gathers light on its detectors. It’s even a bigger deal when the world’s most powerful telescope sees the night sky for the first time. Astronomers get ready for the Large Binocular Telescope.

I’ve been writing stories about the LBT for years now, so it seems a little surreal to be reporting on its first light. But here we are. So, for those of you who haven’t been obsessing about this monster since it was first conceived, here’s the breakdown.

The Large Binocular Telescope, in case you hadn’t guessed, is actually two 8.4-metre telescopes perched side-by-side. Although they’re separate, they work together to act like a single, much larger telescope. They have the light-collecting power of an 11.8-metre telescope, and their combined light produces an image sharpness of a single 22.8-metre scope.

The first light images for the LBT were captured in January, and show the galaxy NGC 2770, located 102 million light-years away. The same scene was captured in ultraviolet and green light to show the regions of active star formation. And then it was captured again in red to show the older, cooler stars. Finally, a third composite image was put together that shows both features at the same time.

Now for a bit of history. The observatory’s structure was moved up to the top of Arizona’s Mount Graham in 2002. The first mirror was delivered in 2003, and aligned in 2004. The second mirror was delivered in 2005, and the first individual images where captured soon after that. But it wasn’t until this year that both halves were brought together to act as a single large observatory.

The first light is a great step. I can’t wait for the discoveries to pour in.

Original Source: University of Arizona News Release

The Ultimate Fund-Raising Scheme: Transmit Adverts To Aliens

lovell.thumbnail.jpg

OK, so there have been some strange things going on between us Earthlings and aliens lately. The deep-space Pioneer and Voyager probes carried images and artefacts of our culture into the cosmos decades ago. This plan has now been upstaged by the Deep Space Network transmitting a Beatles tune in the direction of the star Polaris. Both are different methods in an attempt to achieve the same thing – to contact alien civilizations. Extraterrestrials might even be trying to communicate with us by playing around with stars or blasting neutrinos at us

But, in the next episode of this epic saga, as the human race feels more and more alone in a seemingly lifeless, but expanding universe… [breakthis programme will be continued after a message from our sponsors]

Advertising is everywhere. It comes in many shapes and sizes, and in many forms. I just deleted four pieces of spam in my email account (one trying to sell me non-prescription pain killers, one notifying me that I have won the Russian lotto and another two with subjects I’d rather not repeat), I can hear an ad on the radio chatter (something about double-glazed windows), on my desk I can count ten magazine ads, newspaper classified ads, business cards and logos, all set out to do pretty much the same thing: to sell a product and, ultimately, to make money. Advertising is so embedded into our commercial society, it can be difficult to work out what is advertising and what isn’t.

Now it seems there is another kind of advertising on the horizon: Space Spam.

As UK physics and astronomy researchers have experienced recently, the problem with scientific research is that it mainly depends on government funding. Government funding comes and goes and can depend on who is in power and who isn’t. To avoid this, many researchers leave academia in search of better pay in industry. There is nothing wrong with this choice, but often academic institutions and universities lose their top minds to better financial conditions elsewhere.

In an attempt to save the beleaguered astronomy community in the UK, astronomers have come up with an intriguing idea. To rescue the world famous Jodrell Bank Observatory in Cheshire, astronomers intend to transmit adverts into space. This is truly the final frontier for terrestrial advertising, but is it possible that British scientists have finally lost their marbles? How can we expect alien races to pay attention to our attempts at selling them Nacho Cheese Doritos? If they did buy our products, I wouldn’t want to be in charge of the shipping department…

But there is a very serious reason for this off-beat plan. The UK is currently undergoing a funding crisis as the main funding body for UK physics and astronomy struggles to fill a £80 million ($160 million) hole in their finances. No help has been offered by the British government. This new fund-raising scheme is already attracting a lot of attention. The snack manufacturer Doritos has stepped in, donating an undisclosed sum in exchange for transmitting their ad. Many more companies are expected to follow suit. The publicity from helping out struggling observatories seems to be enough for big companies wanting to get involved (after all, they won’t be expecting extraterrestrial orders for at least 84 years).
The incoherent scatter radar facility (EISCAT) on Svalbard in 2002 (credit: Ian O'Neill)
The signal will be sent to the Ursa Major constellation some 42 light years away by the European Incoherent Scatter Radar System (EISCAT) in Svalbard, located in the High Arctic. EISCAT is more commonly used to measure emissions from the aurora and ionospheric dynamics. It can also be used in conjunction with other EISCAT installations in Sweden and mainland Norway to track the velocity and composition of the solar wind. Now, it seems, the powerful radar transmitter will be used to shoot commercials into space.

The first transmission will be 30 seconds long and members of the public will be invited to participate. TV advertising will also be aired in support of the project. If anyone thought UK researchers were going to stay quiet and accept the latest round of financial turmoil, they’d be wrong. Scientists and the public, backed up by advertising revenue, are about to make a very big noise.

If the Beatles tune didn’t agitate the aliens, an enforced ad break probably will, let’s just hope they are sympathetic to the UK funding crisis (and want to make a donation).

Source: Doritos.co.uk, Jodrell Bank Observatory press release

UK Reinstated as Full Member of Gemini Project

It is official: the UK is back as a full member of the Gemini Observatory international partnership. At the beginning of the month, The Science and Technology Facilities Council (STFC) signalled that the UK would partially return to the project after January’s shock announcement that Britain was going to pull all its financial support out of the observatory. Today, the STFC has reinstated the UK as a full member of the Gemini Project. What a rollercoaster ride…

An official joint statement from the Gemini partners reads:

“The Science and Technology Facilities Council has reaffirmed the UK’s position as a full member of the Partnership under the terms of the current Gemini Agreement. The Gemini Board welcomes this statement. The Board acknowledges the STFC’s need to address its budgetary constraints and notes that, under the terms of the Agreement, the UK is entitled to seek to sell some of its telescope time both within the partnership and, subject to the approval of the Board, outside the current partnership.”

This is obviously welcomed news, but the astronomers who were outraged by the initial withdrawal are frustrated as to why selling telescope time wasn’t an option in the first place. Allowing other groups (inside and possibly outside the partnership) to buy campaign time on Gemini is a far better solution to the STFC funding crisis. Wasting the money already invested in the project (over £70 million to develop the project alone) and pulling out entirely seemed a very extreme measure, prompting some UK astronomers to say the UK astronomy community was being “sabotaged”.

This debacle resonated with the other partners of Gemini (including the US, Canada, Chile, Australia, Brazil and Argentina) who responded angrily to the news that the UK was suddenly withdrawing funding (understandable really). Any mention of the UK was quickly removed from the Gemini observatory locations and the official website.

Today’s announcement has reinstated the UK as a full partner once more to the Gemini project. According to a source, the UK flag has even been returned to the Gemini Northern Operations Center in Hilo, Hawaii.

But there is still a problem. The situation has not changed, the STFC still has to plug its funding deficit, and government assistance is still not forthcoming. There are concerns for other UK physics and astronomy projects, as the £15 million ($30 million) savings from cancelling involvement in Gemini will need to be cut from elsewhere.

It would appear that the outrage caused by the STFC’s initial plans to cancel its subscription to Gemini was instrumental in the funding decision U-turn, so the UK physics and astronomy community will have to fight just as hard when more cutbacks are announced in the future. Keep an eye on the STFC Funding Crisis: Astronomy website for updated news on the problems facing physics and astronomy in the UK.

In case you missed the Universe Today coverage of the funding crisis:

Source: Gemini Observatory

Listening to the Universe from the Far Side of the Moon

moonscope-enlarged.thumbnail.jpg

Perhaps one of the best reasons to return to the Moon will be the boon to astronomy. Without an atmosphere, an observatory the Moon won’t have to peer through an obscuring atmosphere, but people will still be able to walk over and fix it – and even upgrade it – into the future. It’s the best of both worlds. It’s no surprise then, that engineers are working on plans for lunar observatories. When the next wave of astronauts return to the Moon, they’ll be bringing their ‘scopes.

NASA recently selected a series of 19 proposals for lunar observatories, including one suggested by a team from MIT. This observatory would help astronomers study the “Dark Ages” of the Universe, when the first stars and galaxies, and even dark matter formed.

During the first billion years after the Big Bang, there were no stars and galaxies, only opaque hot gas. When the first stars could finally form, their radiation helped ionize this gas and make it transparent. You could finally see in the Universe. It was also in this time that the mysterious dark matter formed from the soup of elementary particles, serving as a gravitational structure for matter to clump around.

The MIT proposal is called the Lunar Array for Radio Cosmology, and it’s headed by Jacqueline Hewitt, a professor of physics and director of MIT’s Kavli Institute for Astrophysics and Space Science.

It would consist of hundreds of telescope modules spread over a 2 square km area designed to pick up very-low-frequency radio emissions. Automated vehicles would crawl across the lunar surface deploying the telescopes.

The time of the Dark Ages is impossible to view from Earth because of interference from our high atmosphere as well as the background radio emissions coming from all directions. But the far side of the Moon is shielded from the Earth’s radio barrage. There it would have a clear, quiet view of the most distant Universe.

There’s another advantage with building a long-wavelength radio telescope on the complicated surface of the Moon; it’s much easier than building a fragile mirror for an optical telescope. The low wavelength radio waves don’t require a high degree of accuracy, so it will be a good test for working on surface of the Moon. Even if some of the individual modules aren’t working, or clogged with lunar dust, the full observatory will still be able to collect data.

The telescope would also be used to study coronal mass ejections coming from the Sun, and accurately measure the space weather passing through the Earth-Moon system. This is what the astronauts will use to check their local weather.

MIT will be working on a one-year study to develop a further plan for the array. If it’s actually chosen for development down the road, construction would begin after 2025 at a cost of more than $1 billion.

Original Source: MIT News Release

Real-Time Solar Storm Warning Now Operational, Protecting Astronauts and Satellites

eitsolarstorm.thumbnail.jpg

Highly energetic solar particles are generated by solar flares and can be harmful to astronauts and sensitive satellite circuits. Solar flares are most likely to occur during periods of heightened solar activity (i.e. during solar maximum at the peak of the 11 year solar cycle), and future manned missions will need to be highly cautious not to be unprotected in space at these times. Many attempts are underway at forecasting solar activity so “solar storms” can be predicted, but a form of early warning system is required to allow time for astronauts to seek cover and satellites put in a low-power state. Now, using the Solar and Heliospheric Observatory (SOHO), scientists are testing a new method of detecting high energy solar ions, in real-time.

Using SOHO as an early warning system isn’t a new idea. Ideally positioned at the Sun-Earth First Lagrange Point (L1), SOHO orbits its little island of gravitational stability in direct line of sight to the Sun, 1.5 million km from the Earth. Anything that comes from the Sun will have to pass through the L1 point, firing through any robotic observers positioned there.

SOHO is in good company. Also positioned at the L1point is the Advanced Composition Explorer (ACE) that takes measurements of the solar wind as solar particles continue their way toward the Earth. However, the advanced instrumentation on SOHO allows it to detect very fast electrons (near-relativistic) as they are generated by the Sun. The Comprehensive Suprathermal and Energetic Particle Analyzer (COSTEP) instrument onboard SOHO has provided data about highly energetic particles since 1995, but it’s never been in real-time. Now, using a new technique, solar scientists are able to receive particle data with an hour warning of an impending storm of energetic ions.
Fast electrons are received first, damaging high energy ions follow (credit: Southwest Research Institute)
When a flare explodes via magnetic interactions on the Sun, electrons and ions are accelerated and burst into space. Travelling at high speed, electrons reach SOHO much quicker than the heavier ions. What’s more, the relativistic electrons are harmless, so they provide an ideal, safe, indicator that the damaging ions are following behind.

The forecasting method was developed eight months ago by Dr Arik Posner (Southwest Research Institute, USA) and scientists from the University of Kiel (Germany), NASA’s Goddard Space Flight Center (USA) and the University of Turku (Finland). Oliver Rother from the University of Kiel has seen the potential for the new real-time system and explains, “We were so excited by Posner’s project that we immediately teamed up and developed new software that displays the data and can give a warning three minutes after taking the measurements 1.5 million km away.”

This is obviously good news for any astronaut in Earth orbit, but generally they are protected from intermediate solar storms as they are within the protective shield of the magnetosphere. This system will be most useful for the future colonists of the Moon and any long-haul manned missions to Mars. It may only be an hours warning, but that hour could make all the difference between mission success and mission failure.

Source: SpaceRef.com

Cautious Welcome for UK Research Council U-Turn on Gemini Observatory Funding

The Science and Technology Facilities Council (STFC) appear to have given UK astronomers a temporary reprieve over their access to the Gemini Observatories in Chile and Hawaii. As previously reported on the Universe Today, UK astronomers were stunned at the decision to totally pull out from the international collaboration with one of the worlds most advanced telescope systems. It now appears that the STFC is reinstating the British share in the project by negotiating a reduction in funding, rather than negotiating its withdrawal from the project.

Last month, the council responsible for the UK’s funding of astronomical and physics research announced that the country would be pulling out of the highly successful Gemini Observatory project. The reason? To help plug the £80 million ($160 million) hole in their finances. After calls to the British government for financial aid fell on deaf ears, drastic measures to cut the £4 million ($8 million) per year investment to the project seemed like one of the options open to them. Reaction to the news led to speculation from some academics that UK astronomy was being “deliberately sabotaged”.

STFC funding cuts have proved highly unpopular since it inherited the debt from the two previous councils (the Particle Physics and Astronomy Research Council – PPARC – and Council for the Central Laboratory of the Research Councils – CCLRC) the STFC was merged from in April 2007. Many UK scientists are bemused by the cutbacks, blaming hugely expensive projects (such as the Diamond Synchrotron in Oxfordshire) for going over budget. There is the prediction that the UK may have some of the finest research facilities in the world, but due to job cutbacks from the funding deficits, there will be nobody to carry out the research. Some scientists have even highlighted recent cutbacks by campaigning for change to the STFC and government funding of research councils.

Although the STFC has altered its position on Gemini funding, astronomers remain cautious as discussions continue over the future of British involvement. For now, the UK will be involved in cutting edge astronomy research till the summer at least. Beyond that, some cutbacks seem ominous, but at least the “hasty” decision to pull out of the project has been revoked for the time being.

Source: BBC