Life on Alien Planets May Not Require a Large Moon After All

Earth and Moon. Credit: NASA

[/caption]

Ever since a study conducted back in 1993, it has been proposed that in order for a planet to support more complex life, it would be most advantageous for that planet to have a large moon orbiting it, much like the Earth’s moon. Our moon helps to stabilize the Earth’s rotational axis against perturbations caused by the gravitational influence of Jupiter. Without that stabilizing force, there would be huge climate fluctuations caused by the tilt of Earth’s axis swinging between about 0 and 85 degrees.

But now that belief is being called into question thanks to newer research, which may mean that the number of planets capable of supporting complex life could be even higher than previously thought.

Since planets with relatively large moons are thought to be fairly rare, that would mean most terrestrial-type planets like Earth would have either smaller moons or no moons at all, limiting their potential to support life. But if the new research results are right, the dependence on a large moon might not be as important after all. “There could be a lot more habitable worlds out there,” according to Jack Lissauer of NASA’s Ames Research Center in Moffett Field, California, who leads the research team.

It seems that the 1993 study did not take into account how fast the changes in tilt would occur; the impression given was that the axis fluctuations would be wild and chaotic. Lissauer and his team conducted a new experiment simulating a moonless Earth over a time period of 4 billion years. The results were surprising – the axis tilt of the Earth varied only between about 10 and 50 degrees, much less than the original study suggested. There were also long periods of time, up to 500 million years, when the tilt was only between 17 and 32 degrees, a lot more stable than previously thought possible.

So what does this mean for planets in other solar systems? According to Darren Williams of Pennsylvania State University, “Large moons are not required for a stable tilt and climate. In some circumstances, large moons can even be detrimental, depending on the arrangement of planets in a given system. Every system is going to be different.”

Apparently the assumption that a planet needs a large moon in order to be capable of supporting life was a bit premature. The results so far from the Kepler mission and other telescopes have shown that there is a wide variety of planets orbiting other stars, and so probably also moons, which we are now also on the verge of being able to detect. It’s nice to think that more of the terrestrial-type rocky planets, with or without moons, might be habitable after all.

Do-It-Yourself Guide to Measuring the Moon’s Distance

The Moon. Photo credit: NASA.

[/caption]

When the distance from the Earth to the Moon comes up, the common figure thrown around is 402,336 km (or 250,000 miles). But have you every wondered how astronomers got that figure? And how exact it really is? There are a couple of ways you can measure the distance of the Moon that don’t require lasers or any instruments. All you need are your eyes, a clear sky, and someone else willing to stand outside all night with you. 

There are two ways to measure the distance from the Earth to the Moon on your own: using a Lunar eclipse and using parallax. Let’s look at eclipses first.

The phases of a Lunar eclipse. Photo credit: Keith Burns for NASA/JPL

The Ancient Greeks used Lunar eclipses – the phenomena of the Earth passing directly between the sun and the Moon – to determine the distance from the Earth to its satellite. It’s a simple matter of tracking and timing how long it takes the Earth’s shadow to cross over the Moon.

Start with the few knowns. We know, as did the Ancient Greeks, that the Moon travels around the Earth at a constant speed – about 29 days per revolution. The diameter of the Earth is also known to be about 12,875 km or 8,000 miles.By tracking the movement of the Earth’s shadow across the Moon, Greek astronomers found that the Earth’s shadow was roughly 2.5 times the apparent size of the Moon and lasted roughly three hours from the first to last signs of the shadow.

From these measurements, it was simple geometry that allowed Aristarchus (c. 270 BC) to determined that the Moon was round 60 Earth radii away (about 386,243 km or 240,000 miles). This is quite close to the currently accepted figure of 60.3 radii.

You can follow Aristarchus’ method in your own backyard if you have a clear view of a Lunar eclipse. Track the movement of the Earth’s shadow on the Moon by drawing the changes and time the eclipse. Use your measurements to determine the Moon’s distance.

Lunar parallax: the moon as observed from Italy and China at the same time during a lunar eclipse. Photo credit: measurethemoon.org/wordpress

For the second method, you’ll need a friend to help out. The Ancient Greeks also knew about parallax, an object’s apparent change in position when seen from two different viewpoints. You can experience parallax by holding a pen out at arm’s length and looking at it with one eye at a time. As you switch between your left and right eye, the pen will appear to move back and forth.

The same thing can be seen on a giant scale. Two observers in different parts of the world (at least 3,200 km or 2,000 miles apart) will see the Moon’s position as different from where calculations say it should be in the night sky.

To find the distance of the Moon from the Earth, you and a friend stand 3,200 km apart and each take a picture of the Moon at exactly the same time. Then, compare your images. The Moon will be in a different spot, but the background stars will be in the same place. What your images have given you is a triangle. You know the base (the distance between you and your friend), and you can find the angle at the top (the point of the Moon in this triangle). Simple geometry will give you a value for the distance of the Moon.

It might be a little more labour intensive than searching the internet, but determining the Moon’s distance yourself is sure to be more fun! If you really want to get involved, check out International Measure the Moon Night on Dec. 10, 2011. Join participants around the world who register their own events and share their images and observations!

A graph showing which parts of the world have the best chance of measuring the moon's distance using these two methods. Regions in red can see full eclipses while regions covered in red bars are best suited to measurements using parallax. Photo credit: measurethemoon.org/wordpress

Massive Motion – NASA’s Mobile Launcher Moves to Launch Pad

NASA's Mobile Launcher (ML) begins its long (and slow) trek to Launch Complex-39B at Kennedy Space Center in Florida. Photo Credit: Alan Walters/awaltersphoto.com

Video of Mobile Launcher on its move out to Launch Complex 39B courtesy of Alan Walters/awaltersphoto.com

CAPE CANAVERAL, Fla – NASA decided that its Mobile Launcher (ML) needed a bit of a shakedown cruise – so it took it on a trip to Launch Complex – 39B (LC-39B). Along the way it stopped and reviewed data as to how the massive tower fared as it lumbered along at the blistering pace of a mile-an-hour. This does not make for riveting must-see video – unless you speed it up.

In the roughly minute-long video the ML moves along at a (somewhat) faster pace. The ML is part of the space agency’s plans to return NASA to the business of space exploration once again. If all goes according to plan, the ML will be the platform used to launch NASA’s Space Launch System or SLS.

[/caption]

As with so many aspects of space exploration, there is a type of art that flows from even the least aesthetic blocky components that are used to lift Heaven and Earth. For those with the right eye, even a metallic tower has a beauty all its own.

That is exactly what aerospace photographer Alan Walters does – find the path to let an object’s inner beauty shine through. The burly photographer has an artist’s eye and loves sharing the awe of all manners of space flight and spacecraft processing.

On Wednesday one of the most emotional aspects of the journey to the launch pad – was the resemblance of some of the images – to those shot during the Apollo era. This imagery could well be prescient as NASA is passing the responsibility of delivering crew and cargo to the International Space Station to commercial space firms as it turns its focus on launching crews to points beyond low-Earth-orbit.

In an image that is eerily similar to shots taken during the moonshots of the late 1960s and early 1970s NASA's Mobile Launcher moves out to Launch Complex-39B on Nov. 16, 2011. Photo Credit: Alan walters/awaltersphoto.com

The ML moved from next to Kennedy Space Center’s (KSC) Vehicle Assembly Building (VAB) to LC-39B to collect data from structural and functional engineering tests. Any relevant data that is gleaned from the journey will be used to modify the ML. The 355-foot-tall ML is being developed to support NASA’s exploration objectives.

“To be honest, I wasn’t expecting much from the move,” Walters said. “After the thing got moving, I began having Apollo flashbacks and I got more and more into photographing and getting video of this event. It made me hopeful about what we might be seeing fly out of Kennedy (Space Center) in the years to come.”

Spiraling upward into the sky, the Mobile Launcher rises some 355 feet into the air and could one day be the platform from which astronauts launch to visit other worlds. Photo Credit: Alan Walters/awaltersphoto.com

The Moon as You’ve Never Seen It Before

Lunar Reconnaissance Orbiter Wide Angle Camera color shaded relief of the lunar farside (NASA/GSFC/DLR/Arizona State University).

[/caption]

You’re looking at a brand new view of the lunar farside, as never seen before. The team from the Lunar Reconnaissance Orbiter has released the first version of a topographic map of nearly the entire Moon, from data from the Wide Angle Camera (WAC) on the spacecraft.

“This amazing map shows you the ups and downs over nearly the entire Moon, at a scale of 100 meters across the surface, and 20 meters or better vertically,” said principal investigator Mark Robinson, writing on the LROC website. “Despite the diminutive size of the WAC (it fits in the palm of one’s hand), it images nearly the entire Moon every month.”

Every month? So why is this a “new” map since LRO has been in lunar orbit since mid-2009?

Robinson said that each month the Moon’s lighting changes, so the WAC methodically builds up a record of how different rocks reflect light under different conditions, and adds to the LROC library of stereo observations.

“The WAC really is the little camera that could!” Robinson said.

Left: LROC Wide Angle Camera attached to a test setup shortly before mounting on the spacecraft. Right: WAC being handed up to engineers for integration with LRO. Photos courtesy Mark Robinson, via the LROC website.

It is very similar to the MARCI camera (Mars Color Imager) on the Mars Reconnaissance Orbiter, another wide-angle, low-resolution camera specially built for orbital observations; both cameras were built by Malin Space Science Systems.

Topographic maps provide a detailed and accurate graphic representation of natural features on the ground, and Robinson this new map of the Moon will help both lunar scientists and future explorers on the Moon.

Combing data from the WAC along with the LRO Lunar Orbiter Laser Altimeter (LOLA), the scientists are able to provide a topographic map of nearly the entire Moon. Due to persistent shadows near the poles it is not possible to create a complete WAC stereo map at the very highest latitudes, but LOLA provides a very high resolution topographic model of the poles.

How is a digital topographic map created from stereo images? The WAC stereo images were compared one against another by pattern-matching a moving box of pixels until the best fit was found between two images with different viewing angles. The new topographic model was constructed from 69,000 WAC stereo models.

Robinson and his team are already looking towards improvements they can make with subsequent versions of their topographic maps.

“The current model incorporates the first year of stereo imaging, and there is another year of data that can be added to the solution,” he said. “These additional stereo images will not only improve the sharpness (resolution) of the model but also fill in very small gaps that exist in the current map. The LROC team has made small improvements to the camera distortion model, and the LOLA team has improved our knowledge of the spacecraft position over time. These next generation steps will further improve the accuracy of Version 2 of the LROC GLD100 topographic model of the Moon.”

You can see the “zoomable” full resolution versions of the new map for both the far and near side at this link.

Source: LROC website

Want To Fly In Space? NASA Looking For More of the “Right Stuff”

NASA announced that it ws accepting applications for new astronauts. Photo Credit: Jeff Soulliere

[/caption]
NASA is looking for folks with the “right stuff.” The space agency is seeking qualified individuals for when the space agency once again travels into space – and beyond low-Earth-orbit. The announcement of NASA’s process for selecting its next class of astronauts was made at an event held at the Webb auditorium at NASA Headquarters located in Washington D.C. on Tuesday, Nov. 15.

At this event was NASA Administrator Charlie Bolden, Assistant Administrator for Human Capital Jeri Buchholz, Flight Crew Operations Director Janet Kavandi as well as five members of the 2009 astronaut class. They were Serena Aunon, Kjell Lindgren, Kathleen Rubins, Scott Tingle and Mark Vande Hei.

NASA is currently attempting to hand off providing access to low-Earth-orbit or LEO as it attempts to send astronauts beyond LEO for the first time in four decades. Photo Credit: jeff Soulliere

“For 50 years, American astronauts have led the exploration of our solar system,” Bolden said. “Today we are getting a glimpse of why that will remain true for the next half-century. Make no mistake about it, human space flight is alive and well at NASA.”
Bolden is a former shuttle astronaut himself, having flown into space four times.

The 2009 class of astronauts – was the first to graduate in a new era of space flight – one which would eventually see the retirement of NASA’s fleet of space shuttle orbiters. NASA is currently working to develop not only a new spacecraft – but a new launch vehicle as well. The Orion Multi-Purpose Crew Vehicle or Orion MPCV may one day ferry astronauts to points beyond LEO.

With NASA's fleet of shuttle orbiters on their separate ways to various museums across the country, NASA is currently lacking the capacity to launch astronauts on its own and is dependent on Russia's Soyuz spacecraft. Photo Credit: Jeff Soulliere

To get the Orion MPCV to orbit the space agency is developing the Space Launch System or SLS. This launch vehicle, resembling a cross between the space transportation system (STS) that comprised the shuttle – and the Saturn V moon rocket was recently unveiled by the space agency.

As far as access to LEO is concerned, NASA is working to hand those responsibilities over to commercial space firms such as SpaceX, Sierra Nevada Corporation and Boeing. These companies will also work to deliver crew and cargo to the orbiting International Space Station (ISS). If it all works out these new astronauts could well be among the first to return the U.S. to the Moon or be the first person to visit an asteroid or even Mars.

The astronaut's selected in this process could very well be the first astronauts to land on an asteroid - or even the planet Mars. Photo Credit: Jeff Soulliere

The Astronaut Candidate Program is open to any person that meets the agency’s qualifications. They can submit their applications online through the USAJobs.gov website. For those considering a career in the astronaut corps, here are some of the requirements:

• Bachelor’s Degree in either science, engineering or math
• Three years of relevant professional experience
• Experience in flying high-performance jet aircraft is considered a plus
• Educators that have taught grades kindergarten through the 12 are highly encouraged to apply

NASA will be accepting applications through January 27, 2012. The agency will bring in applicants to be interviewed and evaluated. NASA plans to make their final decision in 2013 – with training of these new astronauts starting that summer.

NASA has been working to see that the Orion Multi-Purpose Crew Vehicle or Orion MPCV is ready in time for deep space missions. Photo Credit: NASA.gov

Orion Spacecraft to Launch in 2014

NASA has announced that it will conduct an unmanned test flight called the Exploration Flight Test-1 or EFT-1 in 2014. Image Credit: NASA.gov

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov

ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans

KENNEDY SPACE CENTER, Fla – Every year the Astronaut Scholarship Foundation (ASF) hosts its “Astronaut Autograph Show” at Kennedy Space Center in Florida. This year it was held on Nov. 5-6 at the Kennedy Space Center Visitor Complex’s Debus Center. The ASF coordinated with the operators of the Cocoa Beach Air Show to ensure that the show had a very dramatic ending. Continue reading “ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans”

How the Moon Became Magnetized

astronauts faced possible radiation dangers on the Moon.
Apollo 17 astronaut Harrison "Jack" Schmitt at Tracy Rock on the lunar surface. If a solar storm had hit the Moon while the astronauts were on the surface exploring, it could have been a disaster. Credit: NASA.

[/caption]

It’s been a mystery ever since the Apollo astronauts brought back samples of lunar rocks in the early 1970s. Some of the rocks had magnetic properties, especially one collected by geologist Harrison “Jack” Schmitt. But how could this happen? The Moon has no magnetosphere, and most previously accepted theories state that it never did. Yet here we have these moon rocks with undeniable magnetic properties… there was definitely something missing in our understanding of Earth’s satellite.

Now a team of researchers at the University of California, Santa Cruz thinks they may have cracked this enigmatic magnetic mystery.

In order for a world to have a magnetic field, it needs to have a molten core. Earth has a multi-layered molten core, in which heat from the interior layer drives motion within the iron-rich outer layer, creating a magnetic field that extends far out into space. Without a magnetosphere Earth would have been left exposed to the solar wind and life as we know it could may never have developed.

Apollo 17 lunar rock sample

Simply put, Earth’s magnetic field is crucial to life… and it can imbue rocks with magnetic properties that are sensitive to the planet-wide field.

But the Moon is much smaller than Earth, and has no molten core, at least not anymore… or so it was once believed. Research of data from the seismic instruments left on the lunar surface during Apollo EVAs recently revealed that the Moon may in fact still have a partially-liquid core, and based on a paper published in the November 10 issue of Nature by Christina Dwyer, a graduate student in Earth and planetary sciences at the University of California, Santa Cruz, and her co-authors Francis Nimmo at UCSC and David Stevenson at the California Institute of Technology, this small liquid core may once have been able to produce a lunar magnetic field after all.

The Moon orbits on its axis at such a rate that the same side always faces Earth, but it also has a slight wobble in the alignment of its axis (as does Earth.) This wobble is called precession. Precession was stronger due to tidal forces when the Moon was closer to Earth early in its history. Dwyer et al. suggest that the Moon’s precession could have literally “stirred” its liquid core, since the surrounding solid mantle would have moved at a different rate.

This stirring effect – arising from the mechanical motions of the Moon’s rotation and precession, not internal convection – could have created a dynamo effect, resulting in a magnetic field.

This field may have persisted for some time but it couldn’t last forever, the team said. As the Moon gradually moved further away from Earth the precession rate slowed, bringing the stirring process – and the dynamo – to a halt.

“The further out the moon moves, the slower the stirring, and at a certain point the lunar dynamo shuts off,” said Christina Dwyer.

Still, the team’s model provides a basis for how such a dynamo could have existed, possibly for as long as a billion years. This would have been long enough to form rocks that would still exhibit some magnetic properties to this day.

The team admits that more paleomagnetic research is needed to know for sure if their proposed core/mantle interaction would have created the right kind of movements within the liquid core to create a lunar dynamo.

“Only certain types of fluid motions give rise to magnetic dynamos,” Dwyer said. “We calculated the power that’s available to drive the dynamo and the magnetic field strengths that could be generated. But we really need the dynamo experts to take this model to the next level of detail and see if it works.”

In other words, they’re still working towards a theory of lunar magnetism that really sticks.

 

Read the article by Tim Stephens on the UCSC website.

 

NASA Up Close Tour: VAB and Space Shuttle Endeavour On Display

Now that the shuttle era has come to a close, NASA, through the Kennedy Space Center Visitor Complex, is opening some of its doors to allow the public a peek inside - including the massive doors of the Vehicle Assembly Building or VAB. Photo Credit: Jason Rhian

[/caption]
CAPE CANAVERAL, Fla – When guests visited the Kennedy Space Center Visitor Complex in the past, they never knew if they would have the opportunity to see an actual space shuttle in some stage of being processed for a mission. The operators of the Visitor Complex have changed that – guests will now not only get the chance to see space shuttle Endeavour (as well as potentially Atlantis and Discovery in the future) – but to also tour the cavernous Vehicle Assembly Building.

The opportunity to tour the VAB is currently being offered for a limited time and only to a limited number of Visitor Complex guests per day as part of KSC Up-Close, a new two-hour, guided special interest tour that began on Nov. 1. While touring inside the VAB itself is considered a treat, to actually be just a short distance away from one of the three remaining orbiters to conduct missions to and from orbit – is a rare thing indeed.

One, almost universal, reaction that guests displayed was craning their necks to see all the way to the ceiling of the Vehicle Assembly Building. Photo Credit: Alan Walters/awaltersphoto.com

“We are very pleased to have the ability to offer to our guests the opportunity to see not just the inside of the Vehicle Assembly Building – but one of the orbiters as well,” said the Kennedy Space Center Visitor Complex’s Public Relations Manager Andrea Farmer. “While we don’t know the exact time frame – but this tour should be offered throughout 2012 and possibly into 2013.”

While undoubtedly one of the most memorable stops on the tour, the VAB tour stop is just one stop on this tour. Other stops include; NASA’s KSC Headquarters, the Operations & Checkout building (O&C), as well as the NASA Causeway providing a view of the adjacent Cape Canaveral Air Force Station.

Guests who choose to go on the KSC Up-Close tour should call ahead as seats on this tour are limited and the tour might not be available every day. Photo Credit: Jason Rhian

From here, guests can see launch pads 17, 37, 40, and 41, which are currently used for commercial and government launches.

After their stop at the VAB, guests will get to see the massive Crawler Transporters and “Crawlerway”. Guests will also get to see the Pegasus barge used to haul the shuttle’s large External Fuel Tanks (ETs) from Louisiana; the famous blue countdown clock and the Shuttle Landing Facility.

Discovery, Atlantis and Endeavour all will be in and out of the Vehicle Assembly Building in the future, allowing guests the opportunity to see these spacecraft first hand. Photo Credit: Jason Rhian

The last place that guests will visit is two hills where NASA remotely shoots launch photography and videography. On one side guests can see Launch Complexes 39A and B and on the other side is the Atlantic. This will provide guests to see the renovations that are currently being done to LC-39B in preparation for commercial launches or for the use for the Space Launch System (SLS).

Guests who had the opportunity to take the tour were amazed at what they were seeing, the sheer scale of the facilities and vehicles – as well as the history that they were walking through.

Three-time shuttle veteran Sam Gemar thinks that this new tour is important in allowing the public to gain a greater appreciation for U.S. human space flight efforts.

“Having flown to space myself, I cannot express strongly enough how much of a tremendous opportunity it is for the public to see the actual vehicles that have sent astronauts into space for the past three decades,” Gemar said. “Kennedy Space Center is where America goes to space and the KSC Up – Close tour allows us to share the history of the Vehicle Assembly Building with the world.”

Although the Visitor Complex cannot guarantee that whenever a guest arrives that they will be able to see a space shuttle inside the VAB (each of the orbiters are being processed for display in their new homes in Los Angeles, CA, Washington, D.C. and Florida. Eventually shuttle Atlantis, which will placed be display in a new facility at the Visitor Complex in 2013.

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.