Monster Meteorite Found in Texas

Clarendon (c) meteorite. Credit: Ruben Garcia
Deedee and Frank Hommel and the 345 kilogram Clarendon (c) meteorite Frank and his horse discovered on their land. The stony meteorite may be the second largest single meteorite ever found in the United States. It displays nice fusion crust on the topside; the bottom side, which faced down in the soil, is covered with caliche (ka-LEE-chee), a cement-like mineral deposit made of calcium carbonate. Credit: Ruben Garcia
DeeDee and Frank Hommel pose with the 760 pound (345 kilogram) Clarendon (c) meteorite discovered on their land. The stony meteorite may be the second largest single chondrite ever found in the United States. It displays dark fusion crust on the topside; the bottom side, which faced down in the soil, is covered with caliche (ka-LEE-chee), a cement-like mineral deposit of calcium carbonate. Credit: Ruben Garcia

On April 6, 2015, Frank Hommel was leading a group of guests at his Bar H Working Dude Ranch on a horseback ride. The horses got thirsty, so Hommel and crew rode cross-country in search of a watering hole. Along the way, his horse Samson suddenly stopped and refused to go any further. Ahead of them was a rock sticking out of the sandy soil. Hommel had never seen his horse act this way before, so he dismounted to get a closer look at the red, dimpled mass. Something inside told him this strange, out of place boulder had to be a meteorite.

This photo was taken of the Clarendon (c) meteorite before it was removed from the ground. There appear to be several broken fragments at lower left. Credit: Frank and Deedee Hommel
This photo was taken of the Clarendon (c) meteorite before it was removed from the ground. There appear to be several broken fragments at lower and center left. The meteorite is a chondrite, composed of rock found in the crust of asteroids. Credit: Frank and DeeDee Hommel

Here’s the crazy thing — Hommel’s hunch was correct. Lots of people pick up an odd rock now and then they think might be a meteorite, but in nearly every case it isn’t. Meteorites are exceedingly rare, so you’re chances of happening across one are remote. But this time horse and man got it right.

The rock that stopped Samson that April day was the real deal and would soon be classified and named the Clarendon (c) stony meteorite. Only the top third of the mass broke the surface; there was a lot more beneath the soil. Hommel used a tractor to free the beast and tow it to his home. Later, when he and his wife DeeDee got it weighed on the feed store scale, the rock registered a whopping 760 pounds (345 kilograms). Hommel with others returned to the site and recovered an additional 70 pounds (32 kilograms) of loose fragments scattered about the area.

This view show of the 760-pound meteorite shows relatively fresh fusion crust from melting of the outer millimeter or two of the meteoroid during its heated passage through Earth's atmosphere. You can also see lots of thumbprints or regmaglypts, which form when softer materials in the rock are ablated away by heat and high pressure experienced during the fall. Credit: Ruben Garcia
This view of the 760-pound meteorite shows relatively fresh fusion crust from melting of the outer millimeter or two of the meteoroid during its heated passage through Earth’s atmosphere. You can also see lots of thumbprints or regmaglypts (left side), which form when softer materials in the rock are ablated away by brief but intense heat and pressure experienced during the fall. Credit: Ruben Garcia

At this point, Frank and DeeDee couldn’t be certain it was a meteorite. Yes, it attracted a magnet, a good sign, but the attraction was weak. Frank had his doubts. To prove one way or another whether this rusty boulder came from space or belonged to the Earth, DeeDee sent a photo of it to Eric Twelker of Juneau, Alaska, a meteorite seller who maintains the Meteorite Market website. Twelker thought it looked promising and wrote back saying so. Six months later, the family sent him a sample which he arranged to have tested by Dr. Tony Irving at the University of Washington.

The dude ranch run by Deedee and Frank Hommel, finders of the Clarendon (c) meteorite. Credit: Ruben Garcia
The Bar H Dude Ranch run by DeeDee and Frank Hommel, finders of the Clarendon (c) meteorite. Credit: Ruben Garcia

Irving’s analysis revealed bright grains of iron-nickel metal and an abundance of chondrules, round grains composed of minerals that were flash-heated into a “fiery rain” in the solar nebula 4.5 billion years ago. When they cooled, the melted material congealed into small solid spheres several millimeters across that were later incorporated into the planetary embryos that grew into today’s planets and asteroids. Finding iron-nickel and chondrules proved beyond a shadow that the Hommels’ rock was a genuine stone from space.

In an e-mail communication, Twelker recounted his part of the story:

“I get about six to a dozen inquiries on rocks every day.  I try to answer all of them — and give a rock ID if possible.  I have to say my patience gets tried sometimes after looking at slag, basalt, and limestone day after day. But if I am in the right mood, then it is fun.  This one made it fun.  Over the years, I’ve probably had a half dozen discoveries this way, but this is by far the most exciting.”

This is a small slice of Northwest Africa 2793, an L4 chondrite similar to Clarendon (c). Credit: Bob King
This small slice of Northwest Africa 2793, an L4 chondrite, is similar to Clarendon (c). Flecks of iron-nickel metal give the cut surface a sparkly appearance. Several round chondrules are visible, especially near the bottom edge. Credit: Bob King

Irving pigeonholed it as an L4 chondrite meteorite. L stands for low-iron and chondrite indicates it still retains its ancient texture of chondrules that have been little altered since their formation. No one knows how long the meteorite has sat there, but the weathering of its surface would seem to indicate for a long time. That said, Hommel had been this way before and never noticed the rock. It’s possible that wind gradually removed the loosely-bound upper soil layer — a process called deflation — gradually exposing the meteorite to view over time.

Once a meteorite has been analyzed and classification, the information is published in the Meteorite Bulletin along with a chemical analysis and circumstances of its discovery. Meteorites are typically named after the nearest town or prominent geographical feature where they’re discovered or seen to fall. Because it was found on the outskirts of Clarendon, Texas, the Hommels’ meteorite took the town’s name. The little “c” in parentheses after the name indicates it’s the third unique meteorite found in the Clarendon area. Clarendon (b) turned up in 1981 and Clarendon (a) in 1979. Both are H5 (high metal) unrelated stony chondrites.

Ruben Garcia a.k.a. Mr. Meteorite arranged the sale of the Clarendon (c) meteorite to Texas Christian University. Courtesy of Ruben Garcia
Ruben Garcia, a.k.a. Mr. Meteorite, arranged the sale of the Clarendon (c) meteorite to Texas Christian University. Courtesy of Ruben Garcia

When Clarendon (c) showed up in the Bulletin late last month, meteorite hunter, dealer and collector Ruben Garcia, better known as Mr. Meteorite, quickly got wind of it. Garcia lives in Phoenix and since 1998 has made his livelihood buying and selling meteorites. He got into the business by first asking himself what would be the funnest thing he could do with his time. The answer was obvious: hunt meteorites!

These rusty rocks, chips off asteroids, have magical powers. Ask any meteorite collector. Touch one and you’ll be transported to a time before life was even a twinkle in evolution’s eye. Their ancientness holds clues to that deepest of questions — how did we get here? Scientists zap them with ion beams, cut them into translucent slices to study under the microscope and even dissolve them in acid in search of clues for how the planets formed.

Garcia contacted the Hommels and posed a simple question:

“Hey, you have a big meteorite on your property. Do you want to sell it?”

They did. So Mr. Meteorite put the word out and two days later Texas Christian University made an offer to buy it. After a price was agreed upon, Garcia began making plans to return to Clarendon soon, load up the massive missive from the asteroid belt on his trailer and truck it to the university where the new owner plans to put it on public display, a centerpiece for all to admire.


Visit the largest chondrite ever found in Texas

“How amazing to walk into a dude ranch and see a museum quality specimen,” said Garcia on his first impression of the stone. “I’ve never seen a meteorite this big outside of a museum or gem show.” Ruben joined Frank to collect a few additional fragments which he plans to put up for sale sometime soon.

So how does Clarendon (c) rank weigh-wise to other meteorite falls and finds? Digging through my hallowed copy of Monica Grady’s Catalogue of Meteorites, it’s clear that iron meteorites take the cake for record weights among all meteorites.

10x closeup of a very thin section through a chondrule in the meteorite NWA 4560. Crystals of olivine (bright colors) and pyroxene are visible. Credit: Bob King
A singe chondrule in a thin section of the meteorite NWA 4560 is seen through a polarizing microscope at a magnification of 10x. Crystals of olivine (bright colors) and pyroxene (darker) are visible. Astronomers believe chondrules were among the first solid material to form in the early solar system when some form of flash heating melted nebular dust. The dust congealed into tiny spheres that were later incorporated into planetesimals and ultimately the planets. Credit: Bob King

But when it comes to stony chondrites, Clarendon (c) is by far the largest individual space rock to come out of Texas. It also appears to be the second largest individual chondrite meteorite ever found in the United States. Only the Paragould meteorite, which exploded over Arkansas in 1930, dropped a larger individual — 820 pounds (371.9 kg) of pure meteorite goodness that’s on display at the Arkansas Center for Space and Planetary Sciences in Fayetteville. There’s truth to the saying that everything’s bigger in Texas.

Every meteorite has a story. Some are witnessed falls, while others fall unnoticed only to be discovered decades or centuries later. The Clarendon meteorite parent body spent billions of years in the asteroid belt before an impact broke off a fragment that millions of years later found its way to Earth. Did this chip off the old block bury itself in Texas soil 100 years ago, a thousand? No one can say for sure yet. But one April afternoon in 2015 they stopped a man and his horse dead in their tracks.

*** If you’d like tips on starting your own meteorite collection, check out my new book, Night Sky with the Naked Eye. It covers all the wonderful things you can see in the night sky without special equipment plus additional topics including meteorites. The book publishes on Nov. 8, but you can pre-order it right now at these online stores. Just click an icon to go to the site of your choice — Amazon, Barnes & Noble or Indiebound. It’s currently available at the first two outlets for a very nice discount:

night-sky-book-cover-amazon-anno-150x150night-sky-book-cover-bn-150x150night-sky-book-cover-indie-150x150

Watch Asteroid 2016 VA Pass Through Earth’s Shadow

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

Holy low-flying space rocks, Batman.

Newly discovered asteroid 2016 VA snuck up on us last night, and crossed through the Earth’s shadow to boot.

Discovered just yesterday by the Mount Lemmon Sky Survey based outside of Tucson Arizona, 2016 VA passed just 58,600 miles (93,700 kilometers) from the surface of the Earth this morning at 00:42 Universal Time (UT). That’s a little over 20% of the distance from the Earth to the Moon, and just over twice the distance to the ring of geosynchronous and geostationary satellites around the Earth.

This sort of close pass of a newly discovered asteroid happens a few times a year. What made 2016 VA’s passage unusual, however, was its transit through the Earth’s shadow. The discovery was announced yesterday by the Minor Planet Center, and astronomer Gianluca Masi soon realized that the Virtual Telescope Project had a unique opportunity to capture the asteroid on closest approach.

The passage of asteroid 2016 VA. Image credit: The Virtual Telescope Project.
Asteroid 2016 VA. Image credit: The Virtual Telescope Project.

Gianluca Masi explained how the difficult capture was done:

“The image is a 60-second exposure, remotely taken with “Elena” (a PlaneWave 17” +Paramount ME+SBIG STL-6303E robotic unit) available at the Virtual Telescope project. The robotic mount tracked the extremely fast apparent motion of the asteroid, so stars are trailing. The asteroid is perfectly tracked; it is the sharp dot in the center, marked with two white segments. At imaging time, asteroid 2016 VA was at about 200,000 kilometers from us and approaching.”

Catching a fast-moving asteroid such as 2016 VA on closest approach isn’t easy. First off, there’s an amount of uncertainty surrounding the orbit of a newly discovered object until more observations can be made. 2016 VA passed close enough to the Earth that our planet’s gravity substantially altered the tiny asteroid’s future orbit. Also, a house-sized Earth-crosser like 2016 VA is really truckin’ across the sky on closest approach: 2016 VA was moving at 1500” a minute through Earth’s shadow – that’s 25” a second, fast enough to cross the apparent diameter of a Full Moon in just 72 seconds.

Masi also notes:

“During its flyby, asteroid 2016 VA was also eclipsed by the Earth. We covered the spectacular event, clearly capturing the penumbral effects. The movie is an amazing document showing the eclipse. Each frame comes from a 5-second integration.”

Watch as 2016 VA winks out as it hits Earth's shadow... Image credit: The Virtual Telescope Project.
Watch as 2016 VA winks out as it hits Earth’s shadow… Image credit: The Virtual Telescope Project.

At an estimated 16 to 19 meters in size, 2016 VA shined at 13th magnitude as it crossed the southern hemisphere constellation of Sculptor on closest approach. It crossed through the Earth’s shadow for 11 minutes from 23:23 to 23:34 UT last night, just over an hour before closest approach. You can see the dimming effect of the Earth’s outer penumbral shadow in the video,  just before the asteroid strikes the inner dark umbra and emerges back into eternal sunshine once again. Sitting on 2016 VA, and observer would have seen a total solar eclipse, as the bulk of the Earth passed between the asteroid and the Sun in an event not witnessed by the tiny world for thousands of years.

Such transits of asteroid through the Earth’s shadow have been observed before: 2012 XE54 crossed through the Earth’s shadow a few years back, and 2008 TC3 crossed through the Earth’s shadow before striking the Nubian desert in the early morning hours of October 7th, 2008.

Satellites in geostationary orbit also pull a similar vanishing act right around either equinox as well.

The orbit of 2016 VA. Iimage credit: NASA/JPL.
The orbit of 2016 VA. Image credit: NASA/JPL.

2016 VA is also a similar size to another famous space rock: the 20 metre asteroid that exploded over the city of Chelyabinsk the day after Valentine’s Day in 2013. 2016 VA gave us a miss, and won’t make another pass as close to the Earth again for this century.

To our knowledge, such a video capture of an asteroid crossing through Earth’s shadow is a first, or at least the first that we’ve seen circulated on ye ole Web.

The light curve of 2016 as it passed through the Earth's shadow. Image credit: Peter Birtwhistle, Great Shefford Observatory.
The light curve of 2016 as it passed through the Earth’s shadow. Image credit: Peter Birtwhistle, Great Shefford Observatory.

Congrats to the good folks at the Virtual Telescope Project for swinging into action so quickly, and providing us with an amazing view!

-Catch the closest Full Moon of the year (and for many years to come!) on November 14th live courtesy of the Virtual Telescope Project.

The Moon Is Getting Slammed Way More Than We Thought

A brand new crater on the Moon! This new 12 meter (39 foot) diameter impact crater formed between 25 October 2012 and 21 April 2013 Credit: NASA/GSFC/Arizona State University].
Animation of a temporal pair of the new 39-foot (12-meter) impact crater on the moon photographed by NASA's Lunar Reconnaissance Orbiter Credit: NASA/GSFC/Arizona State University
Animation of a temporal pair of the new 39-foot (12-meter) impact crater on the moon photographed by NASA’s Lunar Reconnaissance Orbiter Credit: NASA/GSFC/Arizona State University

We often hear how the Moon’s appearance hasn’t changed in millions or even billions of years. While micrometeorites, cosmic rays and the solar wind slowly grind down lunar rocks, the Moon lacks erosional processes such as water, wind and lurching tectonic plates that can get the job done in a hurry.

After taking the first boot print photo, Aldrin moved closer to the little rock and took this second shot. The dusty, sandy pebbly soil is also known as the lunar ‘regolith’. Click to enlarge. Credit: NASA
One of a series of photos Apollo 11 astronaut Edwin Aldrin made of his bootprint in the dusty, sandy lunar soil, called regolith. Based on a newy study, the impression may disappear in a few tens of thousands of years instead a few million. Credit: NASA

Remember Buzz Aldrin’s photo of his boot print in the lunar regolith? It was thought the impression would last up to 2 million years. Now it seems that estimate may have to be revised based on photos taken by the Lunar Reconnaissance Orbiter (LRO) that reveal that impacts are transforming the surface much faster than previously thought.

Distribution of new impact craters (yellow dots) discovered by analyzing 14,000 NAC temporal pairs. The two red dots mark the location of the 17 March 2013 and the 11 September 2013 impacts that were recorded by Earth-based video monitoring [NASA/GSFC/Arizona State University]
This map shows the distribution of new impact craters (yellow dots) discovered by analyzing 14,000 narrow-angle camera (NAC) temporal pairs. The two red dots mark the location of the March 17, 2013 and September 11, 2013 impacts that were recorded by Earth-based video monitoring. LRO’s mission was recently extended an addition two years through September 2018. Credit: NASA/GSFC/ASU
The LRO’s high resolution camera, which can resolve features down to about 3 feet (1-meter) across, has been peering down at the Moon from orbit since 2009. Taking before and after images, called temporal pairs, scientists have identified 222 impact craters that formed over the past 7 years. The new craters range from 10 feet up to 141 feet (3-43 meters) in diameter.

By analyzing the number of new craters and their size, and the time between each temporal pair, a team of scientists from Arizona State University and Cornell estimated the current cratering rate on the Moon. The result, published in Nature this week, was unexpected: 33% more new craters with diameters of at least 30 feet (10 meters) were found than anticipated by previous cratering models.

their brightest recorded flash occurred on 17 March 2013 with coordinates 20.7135°N, 335.6698°E. Since then LRO passed over the flash site and the NAC imaged the surrounding area; a new 18 meter (59 feet) diameter crater was found by comparing images taken before and after the March date.
LRO before and after images of an impact event on March 17, 2013. The newly formed crater is 59 feet (18 meters) in diameter. Subsurface regolith not exposed to sunlight forms a bright halo around the new crater. There also appears to be a larger nimbus of darker reflectance material visible much further beyond but centered on the impact. Credit: NASA/GSFC/Arizona State University

Similar to the crater that appeared on March 17, 2013 (above), the team also found that new impacts are surrounded by light and dark reflectance patterns related to material ejected during crater formation. Many of the larger impact craters show up to four distinct bright or dark reflectance zones. Nearest to the impact site, there are usually zone of both high and low reflectance.  These two zones likely formed as a layer of material that was ejected from the crater during the impact shot outward to about 2½ crater diameters from the rim.

An artist's illustration of a meteoroid impact on the Moon. (Credit: NASA).
An artist’s illustration of a meteoroid impact on the Moon. Impacts dig up fresh material from below as well as send waves of hot rock vapor and molten rock across the lunar landscape, causing a much faster turnover of the moon soil than previously thought. Credit: NASA

From analyzing multiple impact sites, far flung ejecta patterns wrap around small obstacles like hills and crater rims, indicating the material was traveling nearly parallel to the ground. This kind of path is only possible if the material was ejected at very high speed around 10 miles per second or 36,000 miles per hour! The jet contains vaporized and molten rock that disturb the upper layer of lunar regolith, modifying its reflectance properties.


How LRO creates temporal pairs and scientists use them to discover changes on the moon’s surface.

In addition to discovering impact craters and their fascinating ejecta patterns, the scientists also observed a large number of small surface changes they call ‘splotches’ most likely caused by small, secondary impacts. Dense clusters of these splotches are found around new impact sites suggesting they may be secondary surface changes caused by material thrown out from a nearby primary impact. From 14,000 temporal pairs, the group identified over 47,000 splotches so far.

Example of a low reflectance (top) and high reflectance (bottom) splotch created either by a small impactor or more likely from secondary ejecta. In either case, the top few centimeters of the regolith (soil) was churned [NASA/GSFC/Arizona State University].
Here are two examples of a low reflectance (top) and high reflectance (bottom) splotch created either by a small impactor or more likely from secondary ejecta. In either case, the top few inches of the regolith (soil) was churned Credit: NASA/GSFC/Arizona State University
Based on estimates of size, depth and frequency of formation, the group estimated that the relentless churning caused by meteoroid impacts will turn over 99% of the lunar surface after about 81,000 years. Keep in mind, we’re talking about the upper regolith, not whole craters and mountain ranges. That’s more than 100 times faster than previous models that only took micrometeorites into account. Instead of millions of years for those astronaut boot prints and rover tracks to disappear, it now appears that they’ll be wiped clean in just tens of thousands!

Exclusive Photos Of The Recently Found 30-Ton Argentine Meteorite

The 30-ton Gancedo meteorite in Argentina that was found in September, 2016 is now on display in Gancedo, Chaco, Argentina. Credit and copyright: Pelin Rodriguez.

A gigantic piece of the famous Campo del Cielo meteorite fall that was found on September 10, 2016 has been un-earthed, and is now on display in Gancedo, Chaco, Argentina. Photographer Pelin Rodriguez shared some images with Universe Today that he took of the newly found behemoth during a recent “Celebration of the Meteorite.”

And in a surprise finding during a weigh-in of both the new Gancedo meteorite and another meteorite named el Chaco that what was thought to be the biggest meteorite from the Campo del Cielo site, the Gancedo meteorite may actually be bigger. El Chaco was originally billed as 37 tons, but a recent tip of the scales put el Chaco at only 28 tons. Rodriguez said both meteorites will be weighed again in order to verify the tonnage. If confirmed, that would make the Gancedo meteorite the second largest meteorite chunk in the world after the 66-ton Hoba meteorite discovered in Namibia, Africa.

A close-up view of the Gancedo meteorite shows colorful details of the 30-ton rock. Credit and copyright: Pelin Rodriguez.
A close-up view of the Gancedo meteorite shows colorful details of the 30-ton rock. Credit and copyright: Pelin Rodriguez.

Rodriguez said the Gancedo meteorite contains many colors ranging from red, yellow, green, white and different shades of brown.

Scientists estimate about 4,500 years ago, a 600 ton space rock entered Earth’s atmosphere and broke apart, sending a shower of metallic meteorites across a 1,350 square km region northwest of Buenos Aires. The region has at least 26 craters, with the largest crater being about 100 meters wide. The AstronoR group said that the Gancedo meteorite was buried only 3 meters deep.

Rodriguez is a member of the AstronoR astronomy group in Argentina that held a two-day astronomy outreach event at the Village of Gancedo, located 312 km from Resistencia, the capital city of Chaco.

The el Chaco meteorite on display. Credit and copyright: Pelin Rodriguez.
The el Chaco meteorite on display. Credit and copyright: Pelin Rodriguez.
The Gancedo meteorite will be on permanent display in the village of Gancedo, Chaco, Argentina. Credit and copyright: Pelin Rodriguez.
The Gancedo meteorite will be on permanent display in the village of Gancedo, Chaco, Argentina. Credit and copyright: Pelin Rodriguez.
Another close-up view of the Gancedo meteorite. Credit and copyright: Pelin Rodriguez.
Another close-up view of the Gancedo meteorite. Credit and copyright: Pelin Rodriguez.
Another view of the Gancedo meteorite. Credit and copyright: Pelin Rodriguez.
Another view of the Gancedo meteorite. Credit and copyright: Pelin Rodriguez.
The area where the Campo del Cielo or "field of the sky" meteorites are on display. Credit and copyright: Pelin Rodriguez.
The area where the Campo del Cielo or “field of the sky” meteorites are on display. Credit and copyright: Pelin Rodriguez.

Thanks to Pelin Rodriguez for sharing his images with Universe Today. You can see some additional photos and videos from the event on the AstronoR Facebook page.

30-Ton Chunk Of 4,500 Year-Old Meteorite Unearthed In Argentina

The Campo del Cielo meteorite was found in outside the small Argentinian town of Gancedo. Credit: Ministerio de Gobierno Facebook page.

Holy iron meteorite, Batman! A gigantic 30-ton chunk of the famous Campo del Cielo meteorite fall has been found outside of a small town in Argentina. The Gancedo meteorite was found on September 10, 2016 by a team of meteorite hunters from the Astronomy Association of the Chaco. This is the second largest piece ever found in the Campo del Cielo region.

Gancedo is the name of the town and Chaco is the province in Argentina where the meteorite was found.

A 30-ton Campo del Cielo meteorite being extracted from the ground in Argentina. Credit:  Ministerio de Gobierno Facebook page.
A 30-ton Campo del Cielo meteorite being extracted from the ground in Argentina. Credit: Ministerio de Gobierno Facebook page.

Scientists estimate about 4,500 years ago, a 600 ton space rock entered Earth’s atmosphere and broke apart, sending a shower of metallic meteorites across a 1,350 square km region northwest of Buenos Aires. The region has at least 26 craters.

A spokesman from the Chaco Astronomy Association said they will have the meteorite re-weighed to verify its weight.

The Ministerio de Gobierno Facbook page shared images and a video of the extraction.

While some media outlets have reported this is the second largest meteorite ever found, it actually is only the second largest meteorite from the Campo del Cielo site. The largest meteorite found on Earth is the Hoba meteorite, discovered in Namibia, Africa and is estimated to weigh more than 132,000 pounds (66 tons), and the second largest is the El Chaco, also part of the Campo del Cielo meteorite fall, which weighs an estimated 37,000 kilograms (37 tons).

Meteorites from Campo del Cielo are widely available, but if you are interested in getting a piece, buy only from reputable dealers.

Campo del Cielo meteorites are described as a polycrystalline coarse octahedrite, the most common kind of nickel-iron meteorites.

Sources and further reading: Facebook, ABC News, Scientific American, Meteorite Market.

Lights in the Sky: Meteors, Reentry, or E.T.?

A fireball lights up the skies over Dayton, Ohio. Image credit and copyright: John Chumack.

It happens a few times every year.

Last week, we poured our morning coffee, powered up our laptop and phone, and prepared to engage the day.

It wasn’t long before the messages started pouring in. ‘Bright fireball over the U.S. West Coast!’ ‘Major event lights up the California skies!’ and variations thereof. Memories of Chelyabinsk came immediately to mind. A bit of digging around ye ole web revealed video and a few authentic stills from the event.

Now, I always like to look these over myself before reading just what other experts might think. Chelyabinsk immediately grabbed our attention when we saw the first videos recording the shock wave of sound generated by the blast. ‘That sucker was close,’ we realized.

Thursday’s (Wednesday evening Pacific Time) event was less spectacular, but still interesting: the nighttime reentry of the Long March CZ-7 rocket body NORAD ID 2016-042E as it broke up over the U.S. West Coast.

How do we know this, and what do we look for? Is that flash a meteor, bolide, reentry or something stranger still?

Most good meteor footage comes from video recorders that are already up and running when the event occurs, to include security and dashboard cameras, and mobile phones already recording another event, such as a concert or game. How fast can YOU have your smartphone camera out and running? We only recently learned that a quick double tap of the home button will bring the camera on our Android to bear, no unlock needed.

If the event occurs on a Friday or Saturday night with lots of folks out on the town on a clear evening, we might see multiple captures come streaming-in of the event. Just such a fireball was witnessed over the United Kingdom on Friday evening, September 21st, 2012.

Likewise, the fakes are never far behind. We’ve seen ’em all, though you’re welcome to try and stump us. Such ‘meteor-wrongs’ that are commonly circulated as authentic are the reentry of Mir, the 1992 Peekskill meteor, Chelyabinsk, the reentry of Hayabusa, and screen grabs from the flick Armageddon… has anyone ever been fooled by this one?

Meteors generally have a very swift motion, and occur with a greater frequency as the observer rotates forward into the path of Earth’s motion around the Sun past local midnight. Remember, it’s the front of the windshield that picks up the bugs rolling down the highway.

Evening meteors, however, can have a dramatic slow, stately motion across the sky, as they struggle to catch up with the Earth. If they reach a brilliance of magnitude -14 — about one whole magnitude brighter than a Full Moon — said meteor is known as a bolide.

Sometimes, such a fireball can begin shedding fiery debris, in a dramatic display known as a meteor train or meteor precession. Such an event was witnessed over the northeastern United States on July 20th, 1860.

1860 meteor train. Painting by Frederic Church.
The 1860 meteor train. Painting by Frederic Church.

Bright meteors may exhibit colors, hinting at chemical competition. Green for nickel (Not kryptonite!) is typically seen. MeteoriteMen’s Geoffrey Notkin once told us a good rule of thumb: if you hear an accompanying sonic boom a few minutes after seeing a meteor, it’s close. Folks often think what they saw went down behind a hill or tree, when it was actually likely more than 50 miles distant — if it hit the ground at all.

Is that a meteor or a reentry? Reentries move slower still, and will shed lots of debris. Here’s what we’re looking at to judge suspect sighting as a reentry:

Heavens-Above: A great clearing house for satellite passes by location. One great tool is that Heavens-Above will generate a pass map for your location juxtaposed over a sky chart.

Aerospace Corp current reentries: Follows upcoming reentries of larger debris with refined orbits.

Space-Track: The U.S. Joint Space Operations Command’s tracking center for artificial objects in orbit around Earth. Access is available to backyard satellite spotters with free registration. The most accurate source for swiftly evolving orbital elements.

SeeSat-L: This message board always lights up with chatter whenever a possible reentry lights up the skies worldwide.

Stranger Skies

Bizarre sights await the keen eyed. A tumbling rocket booster can often flare in a manner similar to Iridium satellites. Satellites way out in geostationary orbit can flare briefly into naked eye visibility during ‘GEOSat flare season’ near the weeks surrounding either equinox.

Some gamma ray bursts, such as GRB 080319B flare up briefly above magnitude +6 into naked eye visibility from far across the Universe. As of yet, there’s never been a reliable observer sighting of such an event, though it should be possible… probably someone far back in humanity’s history witnessed just such a brief flash in the sky, pausing silently to wonder just what it was…

Kaboom! Image credit: NASA/Pi of the Sky.
Kaboom! Image credit: NASA/Pi of the Sky.

Going further back still, a nearby supernova or gamma-ray burst would leave a ghostly blue afterglow from Cerenkov radiation as it pummeled our atmosphere… though it would be a deadly planet-sterilizing indigo glow, not something you’d want to see. Thankfully, we live in the ‘Era of Mediocrity,’ safely outside of the 25-50 light year ‘kill zone’ for any potential supernova.

And what if those lights in the sky really were the vanguard of an alien invasion force? Well, if they really did land rayguns ablaze on the White House lawn, you’ll read it first here on Universe Today!

470 Million Year Old Meteorite Discovered In Swedish Quarry

Osterplana 65, the meteorite at the heart of a mystery. This meteorite is different than the thousands of other meteorites in collections around the world. Image: Birger Schmitz
Osterplana 65, the meteorite at the heart of a mystery. This meteorite is different than the thousands of other meteorites in collections around the world. Image: Birger Schmitz

470 million years ago, somewhere in our Solar System, there was an enormous collision between two asteroids. We know this because of the rain of meteorites that struck Earth at that time. But inside that rain of meteorites, which were all of the same type, there is a mystery: an oddball, different from the rest. And that oddball could tell us something about how rocks from space can change ecosystems, and allow species to thrive.

This oddball meteorite has a name: Osterplana 65. It’s a fossilized meteorite, and it was found in a limestone quarry in Sweden. Osterplana 65 fell to Earth some 470 mya, during the Ordovician period, and sank to the bottom of the ocean. There, it became sequestered in a bed of limestone, itself created by the sea-life of the time.

The Ordovician period is marked by a couple thing: a flourishing of life similar to the Cambrian period that preceded it, and a shower of meteors called the Ordovician meteor event. There is ample evidence of the Ordovician meteor event in the form of meteorites, and they all conform to similar chemistry and structure. So it’s long been understood that they all came from the same parent body.

The collision that caused this rain of meteorites had to have two components, two parent bodies, and Osterplana 65 is evidence that one of these parent bodies was different. In fact, Ost 65 represents a so far unknown type of meteorite.

The faint grey lines in this electron image of Ost 65 are called "shock deformation lamellae" and they are evidence that Ost 65 was the result of a collision. Image: B. Schmidt
The faint grey lines in this electron image of Ost 65 are called “shock deformation lamellae” and they are evidence that Ost 65 was the result of a collision. Image: B. Schmidt

The study that reported this finding was published in Nature on June 14 2016. As the text of the study says, “Although single random meteorites are possible, one has to consider that Öst 65 represents on the order of one per cent of the meteorites that have been found on the mid-Ordovician sea floor. “It goes on to say, “…Öst 65 may represent one of the dominant types of meteorites arriving on Earth 470 Myr ago.”

The discovery of a type of meteorite falling on Earth 470 mya, and no longer falling in our times, is important for a couple reasons. The asteroid that produced it is probably no longer around, and there is no other source for meteorites like Ost 65 today.

The fossil record of a type of meteorite no longer in existence may help us unravel the story of our Solar System. The asteroid belt itself is an ongoing evolution of collision and destruction. It seems reasonable that some types of asteroids that were present in the earlier Solar System are no longer present, and Ost 65 provides evidence that that is true, in at least one case.

Ost 65 shows us that the diversity in the population of meteorites was greater in the past than it is today. And Ost 65 only takes us back 470 mya. Was the population even more diverse even longer ago?

The Earth is largely a conglomeration of space rocks, and we know that there are no remnants of these Earthly building blocks in our collections of meteorites today. What Ost 65 helps prove is that the nature of space rock has changed over time, and the types of rock that came together to form Earth are no longer present in space.

Ost 65 was found in amongst about 100 other meteorites, which were all of the same type. It was found in the garbage dump part of the quarry. It’s presence is a blemish on the floor tiles that are cut at the quarry. Study co-author Birgen Schmitz told the BBC in an interview that “It used to be that they threw away the floor tiles that had ugly black dots in them. The very first fossil meteorite we found was in one of their dumps.”

According to Schmitz, he and his colleagues have asked the quarry to keep an eye out for these types of defects in rocks, in case more of them are fossilized meteorites.

Finding more fossilized meteorites could help answer another question that goes along with the discovery of Ost 65. Did the types and amounts of space rock falling to Earth at different times help shape the evolution of life on Earth? If Ost 65 was a dominant type of meteorite falling to Earth 470 mya, what effect did it have? There appear to be a confounding number of variables that have to be aligned in order for life to appear and flourish. A shower of minerals from space at the right time could very well be one of them.

Whether that question ever gets answered is anybody’s guess at this point. But Ost 65 does tell us one thing for certain. As the text of the study says, “Apparently there is potential to reconstruct important aspects of solar-system history by looking down in Earth’s sediments, in addition to looking up at the skies.”

Tutankhamun’s Meteorite Blade

The Egyptian Pyramids; instantly recognizable to almost anyone. Image: Armstrong White, CC BY 2.0
The Egyptian Pyramids; instantly recognizable to almost anyone. Image: Armstrong White, CC BY 2.0

The spread of metallurgy in different civilizations is a keen point of interest for historians and archaeologists. It helps chart the rise and fall of different cultures. There are even names for the different ages corresponding to increasingly sophisticated metallurgical technologies: the Stone Age, the Bronze Age, and the Iron Age.

But sometimes, a piece of evidence surfaces that doesn’t fit our understanding of a civilization.

Probably the most iconic ancient civilization in all of history is ancient Egypt. Its pyramids are instantly recognizable to almost anyone. When King Tutankhamun’s almost intact tomb was discovered in 1922, it was a treasure trove of artifacts. And though the tomb, and King Tut, are most well-known for the golden death mask, it’s another, little-known artifact that has perhaps the most intriguing story: King Tut’s iron dagger.

King Tutankhamun's Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0
King Tutankhamun’s Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0

King Tut’s iron-bladed dagger wasn’t discovered until 1925, three years after the tomb was discovered. It was hidden in the wrappings surrounding Tut’s mummy. It’s mere existence was a puzzle, because King Tut reigned in 1332–1323 BC, 600 years before the Egyptians developed iron smelting technology.

King Tut's iron dagger was concealed in the wrappings surrounding the boy-king's mummy. Image: Daniela Comelli/Polytechnic University of Milan
King Tut’s iron dagger was concealed in the wrappings surrounding the boy-king’s mummy. Image: Daniela Comelli/Polytechnic University of Milan

It was long thought, but never proven, that the blade may be made of meteorite iron. In the past, tests have produced inconclusive results. But according to a new study led by Daniela Comelli, of the Polytechnic University of Milan, and published in the Journal of Meteoritics and Planetary Science, there is no doubt that a meteorite was the source of iron for the blade.

The team of scientists behind the study used a technique called x-ray fluorescence spectrometry to determine the chemical composition of the blade. This technique aims x-rays at an artifact, then determines its composition by the spectrum of colors given off. Those results were then compared with 11 other meteorites.

In the dagger’s case, the results indicated Fe plus 10.8 wt% Ni and 0.58 wt% Co. This couldn’t be a coincidence, since iron meteorites are mostly made of Fe (Iron) and Ni (Nickel), with minor quantities of Co (Cobalt), P (Phosphorus), S (Sulphur), and C (Carbon). Iron found in the Earth’s crust has almost no Ni content.

Testing of Egyptian artifacts is a tricky business. Egypt is highly protective of their archaeological resources. This study was possible only because of advances in portable x-ray fluorescence spectrometry, which meant the dagger didn’t have to be taken to a lab and could be tested at the Egyptian Museum of Cairo.

Iron objects were rare in Egypt at that time, and were considered more valuable than gold. They were mostly decorative, probably because ancient Egyptians found iron very difficult to work. It requires a very high heat to work with, which was not possible in ancient Egypt.

Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade - Flickr: National Museum, Rio de Janeiro CC BY 2.0
Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade – Flickr: National Museum, Rio de Janeiro CC BY 2.0

Even without the ability to heat and work iron, a great deal of craftsmanship went into the blade. The dagger itself had to be hammered into shape, and it features a decorated golden handle and a rounded rock crystal knob. It’s golden sheath is decorated with a jackal’s head and a pattern of feathers and lilies.

Ancient Egyptians probably new what they were working with. They called meteorite iron from the sky in one hieroglyph. Whether they knew with absolute certainty that their iron meteorites came from the sky, and what that might have meant, they did value the iron. As the authors of the study say, “…our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects.”

The authors go on to say, “Moreover, the high manufacturing quality of Tutankhamun’s dagger blade, in comparison with other simple-shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun’s time.”

Scientists Identify the Source of the Moon’s Water

New research finds that asteroids delivered as much 80 percent of the Moon's water. Credit: LPI/David A. Kring

Over the course of the past few decades, our ongoing exploration the Solar System has revealed some surprising discoveries. For example, while we have yet to find life beyond our planet, we have discovered that the elements necessary for life (i.e organic molecules, volatile elements, and water) are a lot more plentiful than previously thought. In the 1960’s, it was theorized that water ice could exist on the Moon; and by the next decade, sample return missions and probes were confirming this.

Since that time, a great deal more water has been discovered, which has led to a debate within the scientific community as to where it all came from. Was it the result of in-situ production, or was it delivered to the surface by water-bearing comets, asteroids and meteorites? According to a recent study produced by a team of scientists from the UK, US and France, the majority of the Moon’s water appears to have come from meteorites that delivered water to Earth and the Moon billions of years ago.

For the sake of their study, which appeared recently in Nature Communications, the international research team examined the samples of lunar rock and soil that were returned by the Apollo missions. When these samples were originally examined upon their return to Earth, it was assumed that the trace of amounts of water they contained were the result of contamination from Earth’s atmosphere since the containers in which the Moon rocks were brought home weren’t airtight. The Moon, it was widely believed, was bone dry.

The blue areas show locations on the Moon's south pole where water ice is likely to exist (NASA/GSFC)
The blue areas show locations on the Moon’s south pole where water ice is likely to exist. Credit: NASA/GSFC

However, a 2008 study revealed that the samples of volcanic glass beads contained water molecules (46 parts per million), as well as various volatile elements (chlorine, fluoride and sulfur) that could not have been the result of contamination. This was followed up by the deployment of the Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) in 2009, which discovered abundant supplies of water around the southern polar region,

However, that which was discovered on the surface paled in comparison the water that was discovered beneath it. Evidence of water in the interior was first revealed by the ISRO’s Chandrayaan-1 lunar orbiter – which carried the NASA’s Moon Mineralogy Mapper (M3) and delivered it to the surface. Analysis of this and other data has showed that water in the Moon’s interior is up to a million times more abundant than what’s on the surface.

The presence of so much water beneath the surface has begged the question, where did it all come from? Whereas water that exists on the Moon’s surface in lunar regolith appears to be the result of interaction with solar wind, this cannot account for the abundant sources deep underground. A previous study suggested that it came from Earth, as the leading theory for the Moon’s formation is that a large Mars-sized body impacted our nascent planet about 4.5 billion years ago, and the resulting debris formed the Moon. The similarity between water isotopes on both bodies seems to support that theory.

Near-infrared image of the Moon's surface by NASA's Moon Mineralogy Mapper on the Indian Space Research Organization's Chandrayaan-1 mission Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS
Near-infrared image of the Moon’s surface by NASA’s Moon Mineralogy Mapper on the Indian Space Research Organization’s Chandrayaan-1 mission. Credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS

However, according to Dr. David A. Kring, a member of the research team that was led by Jessica Barnes from Open University, this explanation can only account for about a quarter of the water inside the moon. This, apparently, is due to the fact that most of the water would not have survived the processes involved in the formation of the Moon, and keep the same ratio of hydrogen isotopes.

Instead, Kring and his colleagues examined the possibility that water-bearing meteorites delivered water to both (hence the similar isotopes) after the Moon had formed. As Dr. Kring told Universe Today via email:

“The current study utilized analyses of lunar samples that had been collected by the Apollo astronauts, because those samples provide the best measure of the water inside the Moon. We compared those analyses with analyses of meteoritic samples from asteroids and spacecraft analyses of comets.”

By comparing the ratios of hydrogen to deuterium (aka. “heavy hydrogen”) from the Apollo samples and known comets, they determined that a combination of primitive meteorites (carbonaceous chondrite-type) were responsible for the majority of water to be found in the Moon’s interior today. In addition, they concluded that these types of comets played an important role when it comes to the origins of water in the inner Solar System.

These images produced by the Lyman Alpha Mapping Project (LAMP) aboard NASA's Lunar Reconnaissance Orbiter reveal features at the Moon's northern and southern poles in the regions that lie in perpetual darkness. They show regions that are consistent with having large surface porosities — indicating "fluffy" soils — while the reddening is consistent with the presence of water frost on the surface. Credit: Southwest Research Institute
Images produced by the Lyman Alpha Mapping Project (LAMP) aboard NASA’s Lunar Reconnaissance Orbiter reveal features at the Moon’s northern and southern poles, as well as the presence of water frost. Credit: NASA/SwRI

For some time, scientists have argued that the abundance of water on Earth may be due in part to impacts from comets, trans-Neptunian objects or water-rich meteoroids. Here too, this was based on the fact that the ratio of the hydrogen isotopes (deuterium and protium) in asteroids like 67P/Churyumov-Gerasimenko revealed a similar percentage of impurities to carbon-rich chondrites that were found in the Earth’s coeans.

But how much of Earth’s water was delivered, how much was produced indigenously, and whether or not the Moon was formed with its water already there, have remained the subject of much scholarly debate. Thank to this latest study, we may now have a better idea of how and when meteorites delivered water to both bodies, thus giving us a better understanding of the origins of water in the inner Solar System.

Some meteoritic samples of asteroids contain up to 20% water,” said Kring. “That reservoir of material – that is asteroids – are closer to the Earth-Moon system and, logically, have always been a good candidate source for the water in the Earth-Moon system. The current study shows that to be true. That water was apparently delivered 4.5 to 4.3 billion years ago.

The existence of water on the Moon has always been a source of excitement, particularly to those who hope to see a lunar base established there someday. By knowing the source of that water, we can also come to know more about the history of the Solar System and how it came to be. It will also come in handy when it comes time to search for other sources of water, which will always be a factor when trying to establishing outposts and even colonies throughout the Solar System.

Further Reading: Nature Communications

Antarctica Provides Plenty Of Mars Samples Right Now

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Sometimes, the best way to study Mars is to stay home. There’s no substitute for actual missions to Mars, but pieces of Mars have made the journey to Earth, and saved us the trip. Case in point: the treasure trove of Martian meteorites that NASA is gathering from Antarctica.

NASA scientists aren’t the first ones to find meteorites in the Earth’s polar regions. As early as the 9th century, people in the northern polar regions made use of iron from meteorites for tools and hunting weapons. The meteorite iron was traded from group to group over long distances. But for NASA, the hunt for meteorites is focused on Antarctica.

In Antarctica, the frigid temperatures preserve meteorites for a long time, which makes them valuable artifacts in the quest to understand Mars. Meteorites tend to accumulate in places where creeping glacial ice moves them to. When the ice meets a rock obstacle, the meteorites are deposited there, making them easier to find. Recently arrived meteorites are also easily spotted on the surface of the Antarctica ice.

The US began collecting meteorites in Antarctica in 1976, and to date more than 21,000 meteorites and meteorite fragments have been found. In fact, more of them are found in Antarctica than in the rest of the world combined. These meteorites are then shared with scientists around the world.

Collecting meteorites in Antarctica is not a walk in the park. It’s physically gruelling and hazardous work. Antarctica is not an easy environment to live and work in, and just surviving there takes planning and teamwork. But the scientific payoff is huge, which keeps NASA going back.

Meteorites from the Moon and other bodies also arrive on Earth, and are collected in Antarctica. They can tell scientists important things about the evolution and formation of the Solar System, the origin of organic chemical compounds necessary for life, and the origin of the planets themselves.

How Do Martian Meteorites Get To Earth?

A few things have to go right for a Martian meteorite to make it to Earth. First, a meteorite has to collide with Mars. That meteorite has to be big enough, and hit the surface of Mars with enough force, that rock from Mars is propelled off the surface with enough speed to escape Mars’ gravity.

After that, the meteor has to travel through space and avoid a thousand other fates, like being drawn to one of the other planets, or the Sun, by the gravitational pull of those bodies. Or being flung off into the far reaches of empty space, lost forever. Then, if it manages to make it to Earth, and be pulled in by Earthly gravity, it must be large enough to survive entry into Earth’s atmosphere.

The Science

Part of the scientific value in meteorites lies not in their source, but in the time that they were formed. Some meteorites have travelled through space for so long, they’re like time travellers. These ancient meteorites can tell scientists a lot about conditions in the early Solar System.

This is the Hoba meteorite from Namibia. It is the largest known intact meteorite, at 60 tonnes. Image: Patrick Giraud, http://creativecommons.org/licenses/by/2.5
This the Hoba meteorite from Namibia. At 60 tonnes, it is the largest known intact meteorite. Image: Patrick Giraud, http://creativecommons.org/licenses/by/2.5

Meteorites from Mars tell scientists a few things. Since they’ve survived re-entry into Earth’s atmosphere, they can tell engineers about the dynamics of such a journey, and help inform spacecraft design. Since they contain chemical signatures and elements unique to Mars, they can also tell mission specialists things about surviving on Mars.

They can also provide clues to one of the greatest mysteries in space exploration: Did life exist on Mars? A Martian meteorite found in the Sahara desert in 2011 contained ten times the amount of water as other Martian meteorites, and added evidence to the idea that Mars was once a wet world, suitable for life.

NASA’s program to hunt for meteorites in Antarctica has been going strong for many years, and there’s really no reason to stop doing it, since this is the only way to get Martian samples into a laboratory. Each one they find is like a puzzle piece, and like a jigsaw puzzle, you never know which one will complete the big picture.