Kepler Discovers Planets-like Objects Hotter Than Stars

Possible habitable zones around stars. Credit: Kepler mission

The Kepler mission announced the discovery of 5 new extrasolar planets today at the American Astronomical Society meeting in Washington, DC, each with some very unusual properties. But additionally, the space telescope has spotted some Jupiter-sized objects orbiting stars, and these objects are hotter than the host star. The science team has no idea what these objects could be, but they are part of 100 planetary candidates Kepler has observed that are still being analyzed.

The Kepler mission’s objective is to search for Earth-size planets in the habitable zones of other stars, and the planets announced today are comparable in size to Neptune, Jupiter and the other gas giants of our solar system but are substantially less dense. This first set of five new planets discovered by the Kepler mission was discovered in the first six weeks of the telescope’s operation. “The quick discovery indicates that Kepler is performing well,” said William Borucki, from NASA’s Ames Research Center.

One of these new planets is similar in many ways to Neptune, although its irradiation level is much higher. A second planet is one of the least dense planets ever discovered, and along with the other three, confirms the existence of planets with densities substantially lower than those predicted for gas giant planets. Borucki said Kepler 7b has the density of styrofoam, at .17 grams per cubic centimeter, basically a density of zero.
The smallest planet, Kepler 4b, is 4.31 earth radii, or about Neptune-sized. The other four about the size of Jupiter. All five planets have short orbital periods, and follow-up observations will be made with ground-based telescopes.

Since these planets are close to their host stars, they are very hot, hotter than about 1500 K. 1300 K is the temperature where molten lava flows.

Kepler launched in March 2009 and the mission is expected to last 3½ years. The team now has an additional 8 months of data are now available to analyze. Borucki said in 2010 Kepler will focus on the discovery of smaller planets, with an Earth-sized planet being the “holy grail” of exoplanet discoveries.
Other objects detected by Kepler include unusual variable stars, including binaries, oscillating stars, pulsating variables, and more, including other extrasolar planets, but declined to divulge more, saying his team has to be patient and do the confirmations on all the objects before.

Borucki also said data from Kepler will be released to the public on a regular basis starting in June 2010.

Source: AAS Press conference

New Observations of TrES-2b May Reveal New Exoplanet

An artist's impression of a transiting exoplanet. Credit: ESA C Carreau

[/caption]

For those know their solar system history, the discovery of Neptune is an especially exciting story. Before it was detected observationally, its gravitational effects on another planet (Uranus) were discovered. From this, astronomers were able to predict the position of the yet unobserved planet and in 1846 they discovered the predicted planet observationally from Berlin Observatory. (For a more complete retelling of the story, see my summary/review of the book The Neptune File). This discovery prompted searches for other planets from orbital discrepancies attributed to gravitational perturbations on Mercury. However, none were ever found and it was eventually that Mercury’s orbital irregularities were due to relativistic effects.

However, this technique of inferring planets from orbital oddities of a planet may have been used for the first time outside our solar system.

The exoplanet known as TrES-2b is one of the exceptional cases of known exoplanets for which the plane of the orbit lies almost directly in our line of sight. This circumstance means that the planet will appear to cross the disk of the star as it orbits. Although we cannot resolve that disk, it shows up as a characteristic dip in the brightness which can reveal additional information about the system such as “very accurate determinations of the radii of star and planet (relative to the semi-major axis) and the inclination of the orbital plane of the planet”. This additional information allows for excellent determinations of the orbital parameters in order to predict future transits.

A team of German astronomers observed the TrES-2 system in 2006 and 2008 in order to build their understanding of the orbit of the planet. However, when they continued in observation in 2009 they found significant changes in the inclination of the orbit and the period of the orbit. Although planetary migration could change these parameters, it is not expected that such an event could occur on such a short time scale. Additionally, a oddly shaped host star would explain the change, but the degree to which the star would have to be squished at the equator would be impossibly high given the slow rotation rate known for TrES-2.

Instead, the authors suggest “the existence of a third body in the form of an additional planet would provide a very natural explanation”. Although this explanation is anything but conclusive, it does pose an easily testable scenario. If the plane of the orbit of the system is very nearly along the line of sight, this provides the most ideal situation for attempting to detect planets using the radial-velocity of the parent star. The authors even go so far as to suggest a range of periods for a potential planet to have the observed effects. They state, “a planet of one Jovian mass with periods between 50 – 100 days would suffice to cause the observed inclination changes”.

Furthermore, the authors note that several similar systems are known to exist with a close in planet and a second massive planet in a longer orbit. “[I]n the system HIP 14810 there is a close-in planet with a 6.6 day period and a somewhat lighter planet with a period of 147 days, in the HD 160691 system the close-in planet has a period of 9.6 days and two outer planets with Jupiter masses are known with periods of 310 and 643 days.”

First Super-Earths Discovered Around Sun-like Stars

Astronomers say it’s a “neck-and-neck race” as to whether the first potentially habitable planets will be detected from the ground or from space, and today an international team of planet hunters announced they have discovered as many as six low-mass planets around two nearby Sun-like stars, using two ground-based observatories. This haul of planets includes two “super-Earths” with masses 5 and 7.5 times the mass of Earth.

The researchers, led by Steven Vogt of the University of California, Santa Cruz, and Paul Butler of the Carnegie Institution of Washington, said the two “super-Earths” are the first ones found around Sun-like stars. These planets have orbits close to their stars and so they would be too hot to support life or liquid water.

“These detections indicate that low-mass planets are quite common around nearby stars. The discovery of potentially habitable nearby worlds may be just a few years away,” said Vogt, a professor of astronomy and astrophysics at UCSC.

The team found the new planet systems by combining data gathered at the W. M. Keck Observatory in Hawaii and the Anglo-Australian Telescope (AAT) in New South Wales, Australia.

A comparison of the orbits of the planets of 61 Vir with the inner planets in our Solar System. All three planets discovered to date in this system would lie inside the orbit of Venus.
A comparison of the orbits of the planets of 61 Vir with the inner planets in our Solar System. All three planets discovered to date in this system would lie inside the orbit of Venus.

Three of the new planets orbit the bright star 61 Virginis, which can be seen with the naked eye under dark skies in the Spring constellation Virgo. Astronomers and astrobiologists have long been fascinated with this particular star, which is only 28 light-years away. Among hundreds of our nearest stellar neighbors, 61 Vir stands out as being the most nearly similar to the Sun in terms of age, mass, and other essential properties. Vogt and his collaborators have found that 61 Vir hosts at least three planets, with masses ranging from about 5 to 25 times the mass of Earth.

Click here to see an animation showing a simulation of the hot atmosphere of the 5.3 Earth-mass planet 61 Vir b as it circles around its star in a 4.2 day orbit. The imaginary observer sits in space above the planet, and sees the hot side (which always faces the star) rotate into and out of view.

Recently, a separate team of astronomers used NASA’s Spitzer Space Telescope to discover that 61 Vir also contains a thick ring of dust at a distance roughly twice as far from 61 Vir as Pluto is from our Sun. The dust is apparently created by collisions of comet-like bodies in the cold outer reaches of the system.

“Spitzer’s detection of cold dust orbiting 61 Vir indicates that there’s a real kinship between the Sun and 61 Vir,” said Eugenio Rivera, a postdoctoral researcher at UCSC. Rivera computed an extensive set of numerical simulations to find that a habitable Earth-like world could easily exist in the as-yet unexplored region between the newly discovered planets and the outer dust disk.

This image from a simulation of atmospheric flow shows temperature patterns on one of the newly discovered planets (61Virb), which is hot enough that it glows with its own thermal emission. A movie of the simulation is posted at the bottom of this story, showing global atmospheric flow for one full orbit of the planet around its star. Credit: J. Langton, Principia College.
This image from a simulation of atmospheric flow shows temperature patterns on one of the newly discovered planets (61Virb), which is hot enough that it glows with its own thermal emission. A movie of the simulation is posted at the bottom of this story, showing global atmospheric flow for one full orbit of the planet around its star. Credit: J. Langton, Principia College.

The second new system found by the team features a 7.5-Earth-mass planet orbiting HD 1461, another near-perfect twin of the Sun located 76 light-years away. At least one and possibly two additional planets also orbit the star. Lying in the constellation Cetus, HD 1461 can be seen with the naked eye in the early evening under good dark-sky conditions.

The 7.5-Earth-mass planet, assigned the name HD 1461b, has a mass nearly midway between the masses of Earth and Uranus. The researchers said they cannot tell yet if HD 1461b is a scaled-up version of Earth, composed largely of rock and iron, or whether, like Uranus and Neptune, it is composed mostly of water.

According to Butler, the new detections required state-of-the-art instruments and detection techniques. “The inner planet of the 61 Vir system is among the two or three lowest-amplitude planetary signals that have been identified with confidence,” he said. “We’ve found there is a tremendous advantage to be gained from combining data from the AAT and Keck telescopes, two world-class observatories, and it’s clear that we’ll have an excellent shot at identifying potentially habitable planets around the very nearest stars within just a few years.”

The 61 Vir and HD 1461 detections add to a slew of recent discoveries that have upended conventional thinking regarding planet detection. In the past year, it has become evident that planets orbiting the Sun’s nearest neighbors are extremely common. According to Butler, current indications are that fully one-half of nearby stars have a detectable planet with mass equal to or less than Neptune’s.

The Lick-Carnegie Exoplanet Survey Team led by Vogt and Butler uses radial velocity measurements from ground-based telescopes to detect the “wobble” induced in a star by the gravitational tug of an orbiting planet. The radial-velocity observations were complemented with precise brightness measurements acquired with robotic telescopes in Arizona by Gregory Henry of Tennessee State University.

“We don’t see any brightness variability in either star,” said Henry. “This assures us that the wobbles really are due to planets and not changing patterns of dark spots on the stars.”

Due to improvements in equipment and observing techniques, these ground-based methods are now capable of finding Earth-mass objects around nearby stars, according to team member Gregory Laughlin, professor of astronomy and astrophysics at UCSC.

“It’s come down to a neck-and-neck race as to whether the first potentially habitable planets will be detected from the ground or from space,” Laughlin said. “A few years ago, I’d have put my money on space-based detection methods, but now it really appears to be a toss-up. What is truly exciting about the current ground-based radial velocity detection method is that it is capable of locating the very closest potentially habitable planets.”

Lead image caption: 61 Virginis is one of only a handful of truly Sun-like stars that can be seen with the naked eye. Astronomers have discovered three low-mass planets orbiting the star. Credit: NASA’s Sky View

Papers:
A Super-Earth and two Neptunes Orbiting the Nearby Sun-like star 61 Virginis
A Super-Earth Orbiting the Nearby Sun-like Star HD 1461
A long-period planet orbiting a nearby Sun-like star

Source: UC Santa Cruz

Exoplanet Not Really There?

This artist’s concept shows the smallest star known to host a planet. Image credit: NASA/JPL-Caltech

In May 2009, astronomers were jubilant: finally, an extra solar planet had been found by using the method of astrometry. That’s great, except, they may not have found a planet after all. Researchers from JPL reported they found a Jupiter-like planet around a star smaller than our sun. But follow-up observations of the star VB10 are coming up empty. “The planet is not there,” said Jacob Bean from the Georg-August University in Gottingen, Germany, who used a different and more successful approach to look for exoplanets, radial velocity.

Astrometry measures the side-to-side motion of a star on the sky to see whether any unseen bodies might be orbiting it. Using this method is difficult and requires very precise measurements over long periods of time. Using astrometry to look for exoplanets has been around for 50 years, but it hadn’t bagged a verified exoplanet – until, astronomers thought, earlier this year. A team of researchers announced an exoplanet, six times more massive than Jupiter, orbiting a star about one-thirteenth the mass of the Sun, using a telescope at the Palomar Observatory in southern California (S. Pravdo and S. Shaklan Astrophys. J. 700, 623–632; 2009).

“This method is optimal for finding solar-system configurations like ours that might harbor other Earths,” astronomer Steven Pravdo of JPL said in May. “We found a Jupiter-like planet at around the same relative place as our Jupiter, only around a much smaller star. It’s possible this star also has inner rocky planets. And since more than seven out of 10 stars are small like this one, this could mean planets are more common than we thought.”

But using different methods, other astronomers aren’t finding anything.

“We would definitely have seen a significant amount of variation in our data if [the planet] was there,” said Bean, quoted in the online Nature News. Bean has submitted a paper to the Astrophysical Journal.

Radial velocity, which has found most of the extrasolar planets so far, looks for shifts in the lines of a star’s absorption spectrum to track its motion towards and away from Earth, which would be caused by the influence of a planet.

Pravdo says that Bean and his colleagues “may be correct, but there is hyperbole in their rejection of our candidate planet.” Bean’s paper, for instance, only rules out the presence of any planet that is at least three times more massive than Jupiter, says Pravdo, adding that the work “limits certain orbits for possible planets but not all planets.”

Astronomers expect astrometry to work much better above the distorting effects of the atmosphere. Two space missions in the works — the European Space Agency’s GAIA, due to launch in 2012, and NASA’s proposed SIM-lite (Space Interferometry Mission) will use the technique to search for planets as small as Earth around Sun-like stars. Astrometry potentially can yield the mass of a planet, whereas radial velocity only puts a lower limit on it.

Bean admits that astronomers might one day find a planet around VB10 if they scrutinize the star long and hard enough.

Source: Nature News

Cool – Literally – Extrasolar Planet Imaged

Yet another planet outside of our Solar System has been directly imaged, bumping the list up past ten. Given that the first visible light image of an extrasolar planet was taken a little more than a year ago, the list is growing pretty fast. The newest one, planet GJ 758 B is also the coolest directly imaged planet, measuring 600 degrees Kelvin, and it orbits a star that is much like our own Sun. GJ 758 B has a mass of between 10-40 times that of Jupiter, making it either a really big planet or a small brown dwarf.

Unlike many of the other directly imaged planets, GJ 758 B resides in a system remarkably like our own Solar System – the star at the center is Sun-like, and the orbit of the planet is at least the same distance from its star as Neptune is from our own. Current observations put the distance at 29 astronomical units.

“The discovery of GJ 758 B, an extrasolar planet or brown dwarf orbiting a star that is similar to our own sun, gives us an insight into the diversity of substellar objects that may form around Solar-type stars,” said Dr. Joseph Carson, from the Max Planck Institute for Astronomy. “This in turn helps show how our own Solar system, and the environments that are conducive to life, are just one of many scenarios that may be the outcome of planet or brown dwarf formation around Sun-like stars.”

Another object, labeled “C?” in the image above, could potentially be another companion to the star. Further observations will be required to determine whether the object in fact orbits the star or is merely another star in the background of the image which is not part of the system.

The mass of the star still has yet to be exactly determined, thus the 10-40 Jupiter mass range. It is 600 degrees Kelvin, which corresponds to 326 Celsius and 620 Fahrenheit, about the hottest temperature that a conventional oven can reach. Though this may seem hot, it’s actually pretty cool for an extrasolar planet. Even though it is so far away from its Sun that, like Neptune, it receives very little warmth from the star it orbits, GJ 758 B is in a stage of formation where the contraction of the planet due to gravity is converted into heat.

A size comparison of the GJ 758 system and corresponding members of our own Solar System, with the Earth for reference. Image Credit: Credit: MPIA/C. Thalmann
A size comparison of the GJ 758 system and corresponding members of our own Solar System, with the Earth for reference. Image Credit: Credit: MPIA/C. Thalmann

Dr. Markus Janson from the University of Toronto, a co-author of the paper announcing the imaging, said, “This is also why the mass of the companion is not well known: The measured infrared brightness could come from a 700 million year old planet of 10 Jupiter masses just as well as from a 8700 million year old companion of 40 Jupiter masses.” The paper detailing the results will be published in Astrophysical Journal Letters, but is available here on Arxiv.

The planet was imaged using the Subaru Telescope’s new High Contrast Instrument for the Subaru next generation Adaptive Optics (HiCIAO) instrument, which utilizes the technology of adaptive optics to eliminate the interference of our atmosphere that blurs images in ground-based telescopes. The imaging of GJ 758 B is part of the commissioning run of the HiCIAO instrument, which plans to take a larger survey to detect extrasolar planets and circumstellar disks in the next five years.

Source: Max-Planck Institute for Astronomy

The Extremely Large Telescope

The European Southern Observatory (ESO) is planning on building a massive – and I do mean massive – telescope in the next decade. The European Extremely Large Telescope (E-ELT) is a 42-meter telescope in its final planning stages. Weighing in at 5,000 tonnes, and made up of 984 individual mirrors, it will be able to image the discs of extrasolar planets and resolve individual stars in galaxies beyond the Local Group! By 2018 ESO hope to be using this gargantuan scope to stare so deep into space that they can actually see the Universe expanding!

The E-ELT is currently scheduled for completion around 2018 and when built it will be four times larger than anything currently looking at the sky in optical wavelengths and 100 times more powerful than the Hubble Space Telescope – despite being a ground-based observatory.

With advanced adaptive optics systems, the E-ELT will use up to 6 laser guide stars to analyse the twinkling caused by the motion of the atmosphere. Computer systems move the 984 individual mirrored panels up to a thousand times a second to cancel out this blurring effect in real time. The result is an image almost as crisp as if the telescope were in space.

This combination of incredible technological power and gigantic size mean that that the E-ELT will be able to not only detect the presence of planets around other stars but also begin to make images of them. It could potentially make a direct image of a Super Earth (a rocky planet just a few times larger than Earth). It would be capable of observing planets around stars within 15-30 light years of the Earth – there are almost 400 stars within that distance!

The E-ELT will be able to resolve stars within distant galaxies and as such begin to understand the history of such galaxies. This method of using the chemical composition, age and mass of stars to unravel the history of the galaxy is sometimes called galactic archaeology and instruments like the E-ELT would lead the way in such research.

Incredibly, by measuring the redshift of distant galaxies over many years with a telescope as sensitive as the E-ELT it should be possible to detect the gradual change in their doppler shift. As such the E-ELT could allow humans to watch the Universe itself expand!

ESO has already spent millions on developing the E-ELT concept. If it is completed as planned then it will eventually cost about €1 billion. The technology required to make the E-ELT happen is being developed right now all over the world – in fact it is creating new technologies, jobs and industry as it goes along. The telescope’s enclosure alone presents a huge engineering conundrum – how do you build something the size of modern sports stadium at high altitude and without any existing roads? They will need to keep 5,000 tonnes of metal and glass slewing around smoothly and easily once it’s operating – as well as figuring out how to mass-produce more than 1200 1.4m hexagonal mirrors.

The E-ELT has the capacity to transform our view not only of the Universe but of telescopes and the technology to build them as well. It will be a huge leap forward in telescope engineering and for European astronomy it will be a massive 42m jewel in the crown.

Second Exoplanet with Retrograde Orbit Discovered

The exoplanet HAT-P-7b has been observed to have a very curious orbit. It either has a highly tilted orbit – passing almost over the poles of its parent star, HAT-P-7 –  or a retrograde orbit; that is, orbiting in the opposite direction of its parent star. Two teams of researchers, both using the Subaru Telescope in Japan, have published papers on the bizarre properties of this planet, the second exoplanet ever observed to have a retrograde orbit.

In our Solar System, the planets calmly rotate in the same direction as that of their parent star, in our case the Sun. This is called a prograde orbit, and the Earth has the most inclined orbit with regard to the equator of the Sun, of 7.15 degrees. The planet HAT-P-7b, however, has an orbit that is the opposite of the rotation of its parent star but in the same plane as the equator (effectively a 180 degree incline). This is called a retrograde orbit. It may also be the case that it is inclined to at least 86 degrees of the equator of its Sun, so as to have almost a polar orbit. The researchers have yet to determine the true rotation of the star HAT-P-7, and thus which scenario is true for the exoplanet.

“There is a large range of uncertainty because we have not measured the true angle between the orbit and the stellar equator. Instead we can only measure the angle that we see from our perspective on Earth,” said Winn in a MIT press release.

HAT-P-7b is about 1.4 times as wide and 1.8 times as massive as Jupiter, and lies approximately 1,000 light years from the Earth.

A Japanese collaboration led by Norio Narita of the National Astronomical Observatory of Japan, and a team led by MIT assistant professor of physics Joshua Winn both published papers detailing their studies of HAT-P-7b. These studies were published in the Publications of Astronomical Society of Japan Letters October 25, 2009 and the Astrophysical Journal Letters for October 1, 2009, respectively. The paper by the Japanese team is available for your perusal on Arxiv here.

Both research teams used the Subaru Telescope’s High Dispersion Spectrograph instrument to observe the star HAT-P-7. The spectrograph allowed the researchers to monitor the redshift or blueshift of light as the planet orbited the star. In planets with a prograde orbit, their transit in front of the star blocks the blue shifting of the light from the star first, then blocks the redshift of the light, making the star appear to move more that it actually is.

In the case of HAT-P-7b the effect was reversed – that is, the redshifted light appeared bluer, then the blueshifted light appeared redder, making it apparent that the orbit of the planet was not in the same direction of that of HAT-P-7. This effect is called the Rossiter-McLaughlin effect, illustrated below.

The Rossiter McLaughlin effect makes a star appear to have a greater radial velocity than it actually does because of a transiting planet. Image Credit: Nicholas Shanks, WikiMedia Commons
The Rossiter McLaughlin effect makes a star appear to have a greater radial velocity than it actually does because of a transiting planet. Image Credit: Nicholas Shanks, WikiMedia Commons

The odd orbit of HAT-P-7b could have been caused by a number of different factors, and theorists that model the formation of exoplanetary systems will not have to “go back to the drawing boards”. The general consensus is that planets form out of a large disk of material orbiting the star, and thus all orbit in the same direction as the disk out of which they formed.

Multiple planets could have formed in an unstable configuration around the star, and their proximity to each other could have caused a rather chaotic series of gravitational billiards to boot HAT-P-7b into its current orbit. Another explanation is the presence of a third object in the system, such as another massive planet or companion star, that is tilting the orbit of HAT-P-7b due to what’s known as the Kozai effect.

The announcement of the retrograde orbit of HAT-P-7b came only one day after the announcement on August 12th, 2009 that the planet WASP-17b orbits opposite its parent star. HAT-P-7b is also one of the first exoplanets to be studied by the Kepler mission, which studied the planet’s orbit over 10 days. Kepler will take further images of the star during its mission, and by observing the rotation of spots on the surface of the star, nail down the orbital direction, after which we’ll know whether HAT-P-7b is orbiting “backwards” or around the poles of the star.

Source: Subaru Telescope, MIT

Shedding Light on the Sun’s “Lithium Mystery”

Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO

For decades, astronomers have known our Sun contains a low amount of lithium, while other solar-like stars actually have more. But they didn’t know why. By looking at stars similar to the Sun to study this anomaly, scientists have now discovered of a trend: the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. “The explanation of this 60 year-long puzzle is for us rather simple,” said Garik Israelian, lead author on a paper appearing in this week’s edition of Nature. “The Sun lacks lithium because it has planets.”

This finding sheds light not only on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems.

Isrealian and his team took a census of 500 stars, 70 of which are known to host planets, and in particular looked at Sun-like stars, almost a quarter of the whole sample. Using ESO’s HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than “planet-free” stars.

“For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins,” Israelian said. “We now have found that the amount of lithium in Sun-like stars depends on whether or not they have planets.”

These stars have been “very efficient at destroying the lithium they inherited at birth,” said team member Nuno Santos. “Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age.”

Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star.

This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts.

Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. “There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium,” said co-author Michael Mayor. ” It is now up to the theoreticians to figure out which one is the most likely to happen.”

Read the team’s paper.

Source: ESO

Multi-Planet System is Chaotic, Dusty

NASA’s Spitzer Space Telescope captured this infrared image of a giant halo of very fine dust around the young star HR 8799. Image credit: NASA/JPL-Caltech/Univ. of Ariz.

Just what is going on over at the star HR 8799? The place is a mess! But we can just blame it on the kids. Young, hyperactive planets circling the star are thought to be disturbing smaller comet-like bodies, causing them to collide and kick up a huge halo of dust. HR 8799 was in the news in November 2008, for being one of the first with imaged planets. Now, NASA’s Spitzer Space Telescope has taken a closer look at this planetary system and found it to be a very active, chaotic and dusty system. Ah, youth: our solar system was likely in a similar mess before our planets found their way to the stable orbits they circle in today.

The Spitzer team, led by Kate Su of the University of Arizona, Tucson, says the giant cloud of fine dust around the disk is very unusual. They say this dust must be coming from collisions among small bodies similar to the comets or icy bodies that make up today’s Kuiper Belt objects in our solar system. The gravity of the three large planets is throwing the smaller bodies off course, causing them to migrate around and collide with each other. Astronomers think the three planets might have yet to reach their final stable orbits, so more violence could be in store. The planets around HR 8799 are about 10 times the mass of Jupiter.

“The system is very chaotic and collisions are spraying up a huge cloud of fine dust,” said Su. “What’s exciting is that we have a direct link between a planetary disk and imaged planets. We’ve been studying disks for a long time, but this star and Fomalhaut are the only two examples of systems where we can study the relationships between the locations of planets and the disks.”

When our solar system was young, it went through similar planet migrations. Jupiter and Saturn moved around quite a bit, throwing comets around, sometimes into Earth. Some say the most extreme part of this phase, called the late heavy bombardment, explains how our planet got water. Wet, snowball-like comets are thought to have crashed into Earth, delivering life’s favorite liquid.

The Spitzer results were published in the Nov. 1 issue of Astrophysical Journal. The observations were made before Spitzer began its “warm” mission and used up its liquid coolant.

Source: JPL

No Earth-Sized Planet Hunting for Kepler Until 2011

Artist concept of Kepler in space. Credit: NASA/JPL

[/caption]
A glitch in the Kepler spacecraft’s electronics means the space telescope will not have the ability to spot an Earth-sized planet until 2011, according to principal investigator William Borucki. Noisy amplifiers are creating noise that compromises Kepler’s view, and the team will have to generate and upload a software fix for the spacecraft. “We’re not going to be able to find Earth-size planets in the habitable zone — or it’s going to be very difficult — until that work gets done,” said Borucki, who revealed the problem last week to the NASA Advisory Council.

The team knew about the problem before launch, as the noisy amplifiers were noticed during ground testing before the device was launched. “Everybody knew and worried about this,” says instrument scientist Doug Caldwell. But he said the team thought it was riskier to pry apart the telescope’s electronic guts than to deal with the problem after launch.

Kepler launched on March 6, 2009 and is designed to look for the slight dimming of light that occurs when a planet transits, or crosses in front of a star.

The problem was is caused by amplifiers that boost the signals from the charge-coupled devices that form the heart of the 0.95-metre telescope’s 95-million-pixel photometer, which detects the light emitted from the distant stars. Three of the amplifiers are creating noise, and even though the noise affects only a small portion of the data, Borucki says, but the team has to fix the software — it would be “too cumbersome” to remove the bad data manually — so that it accounts for the noise automatically.

The team is hoping to fix the issue by changing the way data from the telescope is processed, and looks to have everything in place by 2011.

Borucki pointed out that the team was probably going to have to wait at least three years to find an extrasolar Earth orbiting in the habitable zone anyway. Astronomers typically wait for at least three transits before they confirm a planet’s existence; for an Earth-sized planet orbiting at a distance similar to that between the Earth and the Sun, three transits would take three years. But Borucki said that the noise will hinder searches for a rarer scenario: Earth-sized planets that orbit more quickly around dimmer, cooler stars — where the habitable zone is closer in. These planets could transit every few months.

The delay for Kepler could mean ground-based observers could now have the upper hand in the race for the holy grail of planet hunting: finding an Earth-like planet.

Kepler and CoRoT (Convection, Rotation and Planetary Transits) both look for transiting planets while the ground-based telescopes use radial velocity, looking for tiny wobbles in the motion of the parent stars caused by the planets’ gravity. The journal Nature quoted astronomer Greg Laughlin from the University of California at Santa Cruz, saying that the delay for Kepler makes it “more likely that the first Earth-mass planet is going to go to the radial-velocity observers”.

Source: Nature