Images, Video from Around the World of Asteroid 2005 YU55’s Close Pass

Animation showing Asteroid 2005 YU55 moving across the sky. Each image was a 2-second exposure, taken with the GRAS Observatory, near Mayhill, New Mexico. Credit: Ernesto Guido, Giovanni Sostero and Nick Howes

[/caption]

A 400-meter-wide asteroid created a lot of “buzz” as it buzzed by Earth, with its closest approach on November 08, 2011 at 23:28 Universal Time (UT). The Near-Earth Asteroid 2005 YU55 passed within 319,000 km (202,000 miles or 0.85 lunar distances, 0.00217 AU) from Earth’s surface. Later, it safely passed our moon at distance of 239,500 km (148,830 miles ). Astronomers from around the world trained their telescopes on this object, hoping to capture images and learn more about this dark space rock.

Above is an animation from the team of Ernesto Guido, Giovanni Sostero and Nick Howes, remotely using the the GRAS Observatory near Mayhill, New Mexico USA with a 0.25-meter telescope, f/3.4 reflector and a CCD camera. The trio said that at the moment of their observing session the asteroid was moving at about 260.07″/min and it was at magnitude ~11. You can see more images and details on their Remanzacco Observatory website. A single image they took is below, along with other observations from various points around the globe, including an infrared image taken with the Keck Observatory.

This first infrared image of asteroid 2005 YU55 was captured by the Keck II telescope. Credit: William Merline, SWRI / W.M. Keck Observatory

The Keck Observatory hosted a live webcast of their observations of the asteroid, hoping to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. They also hoped to be able to look for moons around the asteroid, as about 20% of asteroids have “moons” orbiting them. Battling delays from fog at the summit of Mauna Kea, they team had to wait until conditions cleared, which unfortunately meant the asteroid was farther away when they were able to take a one-second infrared observation. Principal Investigator Bill Merline said it may take days to process this raw data, so look for a more refined image from the team soon. The webcast was a lot of fun, as they showed the events going on insides the observing rooms on both the summit and Waimea, and answered questions from viewers.

This video above is from Jason Ware from Plano, Texas USA who observed Asteroid 2005 YU55 with a 12 inch telescope to create the video.

Near Earth Asteroid 2005 YU55 on 11-08-2011 07:18pm E.S.T., a 10 second exposure. Credit: John Chumack

John Chumack of Galactic Images in Ohio took this image of the asteroid on 11-08-2011 at 07:18pm E.S.T., a 10 second exposure using a 16″ telescope and a QHY8 CCD. John also created a video, which is available on Flickr.

Peter Lake from Australia, has a telescope in New Mexico. He took a series of images at around 03:00 UTC on Nov. 9, using a 20-inch Planewave with a FLI PL11002M. The image field is 4008 X 2675 pixels and about 0.91 arc secs per pixel, so it passed at about 500 arc sec per minute, Lake said.

This video was taken by Steven Conard at the Willow Oak Observatory in Gamber, Maryland USA, with observations on November 9, 11 with the WOO C-14 telescope. This one has a special bonus–a satellite passes through the field as well.

We’ll add more images and video as they become available. Add your images to our Flickr group and we’ll post them.

Asteroid 2005 YU55’s flyby is the closest approach by an object of this size for the next 16 years. In August 2027, AN 10 is going to come within about one lunar distance from Earth. Astronomers estimate this asteroid is anywhere from 1/2 to 2 kilometers in diameter.

Just six months later, 2001 WN5, a 700-meter-wide asteroid will fly between the Earth and the Moon in June 2028, followed by Apophis on April 13, 2029.

Live Webcast as Keck Telescope Attempts Images of Asteroid 2005 YU55

kecktelescopes-browse.thumbnail.jpg

Astronomers from the Keck Telescope in Hawaii will be trying to observe Asteroid 2005 YU55 as it flies away from Earth. A live webcast from Keck starts about the same time this article is being published, starting no later than 9 pm U.S. PST on Nov. 8, or Midnight EST/ 0500 UT on Wednesday, Nov. 9. Indications are the webcast might start a little late because of fog on Mauna Kea.

Their hope is to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. The observing run is being webcast live on UStream from the Keck II Remote Operations room in Kamuela, Hawaii. They also are hoping to be able to look for moons around the asteroid. About 20% of asteroids have “moons” orbiting them.

At the helm of the 10-meter Keck II telescope and using Keck’s pioneering adaptive optics to view YU55 will be asteroid investigators William Merline and Peter Tamblyn of Southwest Research Institute, in Boulder, Colorado, and Chris Neyman of Keck Observatory.

First Movie of Asteroid 2005 YU55’s Flyby

Here’s a short movie of Asteroid 2005 YU55, created from data collected from the 70-meter Deep Space Network antenna at Goldstone, California. The video was generated from six frames, and each of the six frames required 20 minutes of radar data collection. They are the highest-resolution images ever generated by radar of a near-Earth object.
Continue reading “First Movie of Asteroid 2005 YU55’s Flyby”

Just In: NASA’s Latest Image of Asteroid 2005 YU55

This radar image of asteroid 2005 YU55 was obtained on Nov. 7, 2011. Credit: NASA/JPL/Caltech.

[/caption]

NASA’s Deep Space Network antenna in Goldstone, California has captured new radar images of Asteroid 2005 YU55 as it begins its close pass by Earth. The image above was taken on Nov. 7 at 11:45 a.m. PST (2:45 p.m. EST/1945 UTC), when the asteroid was approximately 1.38 million kilometers (860,000 miles) or about 3.6 lunar distances away from Earth. It’s not a great image, but there should be better images available as the asteroid gets closer. Several telescopes will be tracking of the aircraft carrier-sized asteroid throughout the pass. Goldstone’s 230-foot-wide (70-meter) antenna has been keeping an eye on it since Nov. 4, and the Arecibo Planetary Radar Facility in Puerto Rico will begin observations on Nov. 8, as the asteroid will make its closest approach to Earth at 3:28 p.m. PST (6:28 p.m. EST/1128 UTC).

The Slooh telescope will be hosting a live webcast of the flyby on Nov. 8, 2011. Find out more at the Slooh Events page. Keep track of the latest images gathered by astronomers at the Asteroid and Comet Watch website.

Source: NASA

Hoping to See Asteroid 2005 YU55? There’s an App for That!

Starmap is an astronomy/planetarium app for the iPhone and iPad. A companion app, called Spacemap is an extended orrery that lets you view the phases, motions, and positions of items in the Universe all from your iPad. If you’re hoping to track down Asteroid 2005 YU55 as it comes close to Earth on Nov. 8, you might want to check out both Starmap and Starmap. You can see this asteroid in both apps, but Spacemap is the only application available in the iTunes store that displays 2005 YU55’s orbit in 3D animation.

UPDATE: The contest is now closed and the winners have been notified.

Want to win a copy of either Starmap or Spacemap? Universe Today has a two copies of each to give away to the first four readers to answer this question correctly: What year was the last time an asteroid as big as 2005 YU55 passed by Earth?

Answer in the comment section, and indicate which app you’d like. We have two of each to give away. First four commenters to answer correctly wins. Make sure your contact info on Disqus is correct, as that is you’ll be contacted.

Continue reading “Hoping to See Asteroid 2005 YU55? There’s an App for That!”

Asteroid 2005 YU55: See It For Yourself!

Passage of of 2005 YU55 near Altair from 6:03 p.m. – 6:12 p.m. EST (11:03 – 11:12 UTC)

[/caption]

It’s already been stated several times here on Universe Today that 2005 YU55, a 400-meter-wide roughly spherical asteroid, will not pose any threat to Earth as it passes by on Tuesday, November 8… even though it will come within 80% of the distance to the Moon. Many experts have come forward to state this fact, including Don Yeomans of JPL’s Near-Earth Object Observation Program and Lance Benner, a radio astronomer with the Deep Space Network in Goldstone, CA.  But it will still be a notable event, being the first time since 1976 such a large object will pass so closely by our planet. So, with the eve of YU55’s approach upon us, let’s turn our curiosity toward another aspect of this cosmic visitation: how can we see it?

Unfortunately there are a couple of factors working against the casual observer being able to witness YU55’s pass. One: it’s a dark object. A very dark object. 2005 YU55 is a C-type asteroid, which means it is composed of carbonaceous material and is thus effectively darker than coal, reflecting less than 1% of the sunlight that it receives. It probably won’t be brighter than magnitude 10. (On the backwards-ranked scale of apparent magnitude, 6 is the limit of best visibility to the average human eye, while -1 or 0 would be a very bright star. Jupiter is about -3 right now, while the full moon would be -12.7. In a typical suburban neighborhood 3 or 4 is the limit of naked-eye visibility.)

And two: the Moon will be close to full on the night of the 8th, and YU55 will be headed in its direction. That sure won’t help visibility.

But, should you be located in a dark area, and should you have a 6″ or larger telescope at your disposal, you may want to give a go at spotting the asteroid that’s caused quite a fuss over the past few months for yourself. It won’t be a simple task, but it’s not impossible – and to help you out teacher, writer and astronomy enthusiast David Dickinson has posted an article about it on his blog, Astro Guyz.

Here’s an exerpt:

Closest approach to Earth occurs at 11:29 UTC/06:29 EST at about 202,000 miles distant, placing it high to the southwest for observers on the US Eastern Seaboard. At its closest approach, 2005 YU55 will glide along at one degree every 7 minutes, easily noticeable after a few minutes of observation at low power. I plan to target selected areas with my GOTO mount, sketch the field, then watch for changes. I may also take some wide-field piggyback stills with the DSLR, but mostly, this one will just be fun to watch.

Visually tracking a Near-Earth asteroid can be thrilling to watch; for example, I’ve actually seen 4179 Toutatis years ago show discernable movement after tracking it for a few moments in the eyepiece!

– David Dickinson

Wide field finder of 2005 YU55 from sunset until 8:30PM EST.

The asteroid will pass through the constellations Aquila, Delphinus, and Pegasus as it heads westward. Interestingly, 2005 YU55 passes within a degree of Altair centered on 6:07:30PM EST only 27 minutes after local sunset, and also makes a very close pass of the star Epsilon Delphini during closest approach. These both make good visual “anchors” to aim your scope at during the appointed time and watch. Keep in mind, the charts provided are rough and “Tampa Bay-centric…”

On an approach as close as this one, two factors muddle the precise prediction coordinates of the asteroid; one is the fact the gravitational field of the Earth will change the orbit of 2005 YU55 slightly, and two is that the position will change due to the position of the observer on the Earth and the effect of parallactic shift. Many prediction programs assume the Earthly vantage as a mere point in space, fine for positioning deep sky objects but not so hot for ones passing near the planet. A good place to get updated coordinates is JPL Horizons website which lets you generate an accurate ephemeris for your exact longitude latitude and elevation.

David goes on to add:

2005 YU55 will pass our Moon at 8 AM Universal Time on November 9th at a distance only marginally closer than it did the Earth, at 140,000 miles. Interestingly, it also transited Sun on November 3rd as seen from the Moon, but would have appeared <1” in size, a tough target for any would-be lunar-based observer. Its next close predicted passage of the Earth won’t be until 2056 at nearly 3 times the distance.

__________

Excellent information… many thanks to David for sharing with us! (You can read the full article on his website here.) And if you do witness the pass of this asteroid and somehow manage to get some photos of it, you can share them on the Universe Today Flickr group… they may be featured in an upcoming article!

Read more about 2005 YU55’s close pass by Earth tomorrow.

Charts and excerpts by David Dickinson, created with Starry Night and Paint.

 

Asteroid 2005 YU55: An Expert’s Explanation

A radar image an asteroid, 2005 YU55, acquired in April 2010. (This is not the asteroid that will pass by Earth on Jan. 27, 2012)Credit: NASA

NASA’s Jet Propulsion Laboratory released this video today featuring more information about the much-discussed 2005 YU55, a 400-meter-wide asteroid that will pass by Earth next Tuesday at a distance closer than the Moon. The video features research scientist Lance Benner, an expert in radio imaging of near-Earth objects.

While YU55 will come closer than any object we’ve been aware of in the past 35 years, it poses no risk to Earth.

“2005 YU55 cannot hit Earth, at least over the interval that we can compute the motion reliably, which extends for several hundred years.”

– Lance Benner, JPL Research Scientist

[/caption]

While we can’t state enough that there’s no danger from YU55, this close pass will offer a fantastic opportunity for scientists to acquire detailed radar images of this ancient C-type asteroid. 

NASA’s Near-Earth Objects Observation Program will continue tracking YU55 using the 70-meter radar telescope at the Deep Space Network in Goldstone, California, as well as with the Arecibo Planetary Radar Facility in Puerto Rico.

“This is the closest approach by an asteroid this large that we’ve known about in advance,” said Benner. “The Goldstone telescope has a new radar imaging capability which has just become available that will enable us to see much finer detail than has previously been possible.”

Radar imaging allows scientists to better study the surface features and composition of fast-moving, dark objects like YU55 which reflect very little visible light.

Space.com has provided a great infographic that shows exactly where this asteroid will pass by Earth. Note that the side view plainly shows that the path of the asteroid is well above the plane of the Earth/Moon orbit.

Learn about the huge asteroid 2005 YU55's close pass by Earth in this SPACE.com infographic.
Source: SPACE.com: All about our solar system, outer space and exploration

 

Video: JPL

 

Asteroid 2005 YU55 Gets Closer to Earth; “No Chance of an Impact”

A radar image an asteroid, 2005 YU55, acquired in April 2010. (This is not the asteroid that will pass by Earth on Jan. 27, 2012)Credit: NASA

[/caption]

Yes, it’s coming. Yes, it’s big. Yes, it will be even closer than the Moon. And yes… we’re completely safe.

The 400-meter-wide asteroid 2005 YU55 is currently zipping through the inner Solar System at over 13 km (8 miles) a second. On Tuesday, November 8, at 6:28 p.m. EST, it will pass Earth, coming within 325,000 km (202,000 miles). This is indeed within the Moon’s orbit (although YU55’s trajectory puts it a bit above the exact plane of the Earth-Moon alignment.) Still, it is the closest pass by such a large object since 1976… yet, NASA scientists aren’t concerned. Why?

Because its orbit has been well studied, there’s nothing in its way, and frankly there’s simply nothing it will do to affect Earth.

Animation of 2005 YU55's trajectory on Nov. 8. (NASA/JPL) Click to play.

Period.

2005 YU55’s miniscule gravity will not cause earthquakes. It has no magnetic field. It will not strike another object, or the Moon, or the Earth. It will not come into contact with cometary debris, Elenin, a black dwarf, Planet X, or Nibiru. (Not that those last three even exist.) No, YU55 will do exactly what it’s doing right now: passing through the Solar System. It will come, it will go, and hopefully NASA scientists – as well as many amateur astronomers worldwide – will have a chance to get a good look at it as it passes.

Scientists with NASA’s Near-Earth Objects Observation Program will begin tracking YU55 on Friday, November 4 using the 70-meter radar telescope at the Deep Space Network in Goldstone, California , as well as with the Arecibo Planetary Radar Facility in Puerto Rico beginning November 8. These facilities will continue to track it until the 10th.

This close pass will offer a great opportunity to get detailed radar imaging of YU55, an ancient C-type asteroid literally darker than coal. Since these objects can be difficult to observe using visible light, radar mapping can better reveal details about their surface and composition.

To help inform the public about YU55 NASA’s Jet Propulsion Laboratory in Pasadena recently hosted a live Q&A session on Ustream featuring specialists Marina Brozovic, a Goldstone Radar Team scientist, and Don Yeomans, manager of NASA’s Near-Earth Object Program. They fielded questions sent in via chat and Twitter… a recording of the event in its entirety can be seen below:



Video streaming by Ustream

Undoubtedly there will still be those who continue to spread misinformation about 2005 YU55. After all, they did the same with the now-disintegrated comet Elenin. But the truth is out there… and the truth is that there’s no danger, no cover-ups, no “plots”, and simply no cause for concern.

“It’s completely safe… no chance of an impact.”

– Don Yeomans, JPL

Read more about YU55 on our previous post or  on NASA’s Near-Earth Object Program site.

UPDATE: JPL has released a brief video about YU55 featuring research scientist Lance Benner, who specializes in radar imaging of near-Earth objects:

Although classified as a potentially hazardous object, 2005 YU55 poses no threat of an Earth collision over at least the next 100 years. However, this will be the closest approach to date by an object this large that we know about in advance and an event of this type will not happen again until 2028 when asteroid (153814) 2001 WN5 will pass to within 0.6 lunar distances. – Near-Earth Object Program, JPL

Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near

3 D view of the rare Phobos–Jupiter conjunction taken on 1 June 2011 by the High Resolution Stereo Camera on Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Video Caption: Phobos and Jupiter in Conjunction – taken from Mars orbit !
A movie of the 1 June 2011 Phobos–Jupiter conjunction made by combining a sequence of 100 images of the encounter taken by the High Resolution Stereo Camera on ESA’s Mars Express orbiter. Mars Express is searching for safe landing zones on Phobos for Russia’s Phobos-Grunt lander blasting off on November 9. Credits: ESA/DLR/FU Berlin (G. Neukum)
3 D images of Phobos-Jupiter conjuction below
Update – Phobos-Grunt launch processing photo below

In just 7 days, Russia’s Phobos-Grunt sample return mission will blast off for Mars on November 9 on a daring mission to grab soil samples from the surface of the miniscule martian moon Phobos and return them back to Earth for analysis to give us breathtaking new insights into the formation and evolution of Mars, Phobos and our Solar System.

So, check out the amazing animation and 3 D stereo images of fish-like Phobos and banded Jupiter snapped by Europe’s Mars Express orbiter to get a bird’s eye feel for the battered terrain, inherent risks and outright beauty that’s in store for the Phobos -Grunt spaceship when it arrives in the Red Planet’s vicinity around October 2012. Whip out your red-cyan 3 D glasses – Now !

[/caption]

ESA’s Mars Express orbiter (MEX) was tasked to help Russia locate suitable and safe landing sites on Phobos’ pockmarked terrain. MEX was built by ESA, the European Space Agency and has been in Mars orbit since 2003.

To capture this impressive series of rare photos of Jupiter and Phobos in conjunction, Mars Express performed a special maneuver to observe an unusual alignment of Jupiter and Phobos on 1 June 2011.

Mars Express High Resolution Stereo Camera (HRSC) snapped a total of 104 images over 68 seconds when the distance from the spacecraft to Phobos was 11,389 km and the distance to Jupiter was 529 million km.

Phobos- Jupiter Conjunction: before, during and after on 1 June 2011 from Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Enjoy the exquisite views of the bands of Jupiter and imagine exploring the deep pockets and mysterious grooves on Phobos – which may be a captured asteroid.

The camera was kept fixed on Jupiter, to ensure it remained static as Phobos passed in front and which afforded an improvement in our knowledge of the orbital position of Phobos.

Phobos in 3 D during flyby of 10 March 2010. Image taken from a distance of 278 km. Russia’s Phobos-Grunt will retrieve rogolith and rock for return to Earth. Credit: ESA/DLR/FU Berlin (G. Neukum)

NASA’s twin Mars rovers Spirit and Opportunity have also occasionally photographed both of Mars’ moons to further refine their orbital parameters.

NASA’s Curiosity rover remains on track to liftoff for Mars on Nov. 25

Orbital Paths of Phobos and Mars Express. The trajectories of Phobos and Mars Express at the time of the conjunction with Jupiter on 1 June 2011. The letter ‘S’ denotes the South Pole of Mars.
Technicians at Baikonur Cosmodrome prepare Phobos-Grunt for upper stage attachment. Credit: Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Are Black Holes Planet Smashers?

Light echo of dust illuminated by nearby star V838 Monocerotis as it became 600,000 times more luminous than our Sun in January 2002. Credit: NASA/ESA

[/caption]

Some supermassive black holes are obscured by oddly shaped dust clouds which resemble doughnuts. These clouds have been an unsolved puzzle, but last week a scientist at the University of Leicester proposed a new theory to explain the origins of these clouds, saying that they could be the results of high-speed collisions between planets and asteroids in the central region of galaxies, where the supermassive black holes reside.

While black holes are a death knell for any objects wandering too close, this may mean even planets in a region nearby a black hole are doomed — but not because they would be sucked in. The central regions of galaxies just may be mayhem for planets.

“Too bad for life on these planets, ” said Dr. Sergei Nayakshin, whose paper will be published in the Monthly Notices of the Royal Astronomical Society journal.

In the center of nearly all galaxies are supermassive black holes. Previous studies show that about half of supermassive black holes are obscured by dust clouds.

Nayakshin and his team found inspiration for their new theory from our Solar System, and based their theory on the zodiacal dust which is known to originate from collisions between solid bodies such as asteroids and comets.

The central point of Nayakshin’s theory is that not only are black holes present in the central region of a galaxy, but stars, planets and asteroids as well.

The team’s theory asserts that any collisions between planets and asteroids in the central region of a galaxy would occur at speeds of up to 1000 km/sec. Given the tremendous speeds and energy present in such collisions, eventually rocky objects would be pulverized into microscopic dust grains.

Nayakshin also mentioned that the central region of a galaxy is an extremely harsh environment, given high amounts of deadly radiation and frequent collisions, both of which would make any planets near a supermassive black hole inhospitable well before they were destroyed in any collisions.

While Nayakshin said the frequent collisions would be bad news for any life that may exist on the planets, he added, “On the other hand the dust created in this way blocks much of the harmful radiation from reaching the rest of the host galaxy. This in turn may make it easier for life to prosper elsewhere in the rest of the central region of the galaxy.”

Nayakshin believes that a greater understanding of the origins of the dust near black holes is important to better understand how black holes grow and affect their host galaxy, and concluded with, “We suspect that the supermassive black hole in our own Galaxy, the Milky Way, expelled most of the gas that would otherwise turn into more stars and planets. Understanding the origin of the dust in the inner regions of galaxies would take us one step closer to solving the mystery of the supermassive black holes.”

Source: University of Leicester Press Release