Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World

Dawn Orbiting Vesta. This artist's concept shows NASA's Dawn spacecraft orbiting the giant asteroid Vesta. The depiction of Vesta is based on images obtained by Dawn's framing cameras. Dawn is an international collaboration of the US, Germany and Italy. Credit: NASA/JPL-Caltech

[/caption]

NASA’s Dawn Asteroid Orbiter successfully spiraled down today to the closest orbit the probe will ever achieve around the giant asteroid Vesta, and has now begun critical science observations that will ultimately yield the mission’s highest resolution measurements of this spectacular body.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!” Dr. Marc Rayman gushed in an exclusive interview with Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif., and a protégé of Star Trek’s Mr. Scott.

Before Dawn, Vesta was little more than a fuzzy blob in the world’s most powerful telescopes. Vesta is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

Dawn is now circling about Vesta at the lowest planned mapping orbit, dubbed LAMO for Low Altitude Mapping Orbit. The spacecraft is orbiting at an average altitude of barely 130 miles (210 kilometers) above the heavily bombarded and mysterious world that stems from the earliest eons of our solar system some 4.5 Billion years ago. Each orbit takes about 4.3 hours.

“It is both gratifying and exciting that Dawn has been performing so well,” Rayman told me.

Dawn Orbiting Over Vesta - A Hi Res Taste of What's Ahead!
This image of the giant asteroid Vesta was obtained by Dawn in the evening Nov. 27 PST (early morning Nov. 28, UTC), as it was spiraling down from its high altitude mapping orbit to low altitude mapping orbit. Low altitude mapping orbit is the closest orbit Dawn will be making, at an average of 130 miles (210 kilometers) above the giant asteroid's surface. The framing camera obtained this image of an area in the northern mid-latitudes of Vesta from an altitude of about 140 miles (230 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn arrived in orbit at Vesta in July 2011 after a nearly 4 year interplanetary cruise since blasting off atop a Delta II rocket from Cape Canaveral, Florida in September 2007. The probe then spent the first few weeks at an initial science survey altitude of about 1,700 miles (2,700 kilometers).

Gradually the spaceship spiraled down closer to Vesta using her ion propulsion thrusters.

See Vesta science orbit diagram, below, provided courtesy of Dr. Marc Rayman.

Along the way, the international science and engineering team commanded Dawn to make an intermediate stop this past Fall 2011 at the High Altitude Mapping orbit altitude (420 miles, or 680 kilometers).

“It is so cool now to have reached this low orbit [LAMO]. We already have a spectacular collection of images and other fascinating data on Vesta, and now we are going to gain even more,” Rayman told me.

“We have a great deal of work ahead to acquire our planned data here, and I’m looking forward to every bit!

Dawn will spend a minimum of 10 weeks acquiring data at the LAMO mapping orbit using all three onboard science instruments, provided by the US, Germany and Italy.

While the framing cameras (FC) from Germany and the Visible and Infrared Mapping spectrometer (VIR) from Italy will continue to gather mountains of data at their best resolution yet, the primary science focus of the LAMO orbit will be to collect data from the gamma ray and neutron detector (GRaND) and the gravity experiment.

GRaND will measure the elemental abundances on the surface of Vesta by studying the energy and neutron by-products that emanate from it as a result of the continuous bombardment of cosmic rays. The best data are obtained at the lowest altitude.

Dawn spacecraft - Science orbits at Vesta
Credit: NASA/JPL-Caltech/Marc Rayman

By examining all the data in context, scientists hope to obtain a better understanding of the formation and evolution of the early solar system.

Vesta is a proto-planet, largely unchanged since its formation, and whose evolution into a larger planet was stopped cold by the massive gravitational influence of the planet Jupiter.

Dawn’s visit to Vesta has been eye-opening so far, showing us troughs and peaks that telescopes only hinted at,” said Christopher Russell, Dawn’s principal investigator, based at UCLA. “It whets the appetite for a day when human explorers can see the wonders of asteroids for themselves.”

After investigating Vesta for about a year, the engineers will ignite Dawn’s ion propulsion thrusters and blast away to Ceres, the largest asteroid which may harbor water ice and is another potential outpost for extraterrestrial life

Dawn will be the first spaceship to orbit two worlds and is also the first mission to study the asteroid belt in detail.

Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
South Polar Region of Vesta - Enhanced View
An ancient cosmic collision blasted away much of the south pole of Vesta, leaving behind an enoumous mountain about 3 times the height of Mt. Everest. NASA's Dawn spacecraft obtained this image centered on the south pole of Vesta with its framing camera on July 18, 2011 as it passed the terminator. The image has been enhanced to bring out more surface details. It was taken from a distance of about 6,500 miles (10,500 kilometers) away from the protoplanet Vesta. The smallest detail visible is about 1.2 miles (2.0 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Enhanced and annotated by Ken Kremer

Read continuing features about Dawn by Ken Kremer starting here:

Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin

Coming Attraction: Geminid Meteor Shower 2011

Credit: Wally Pacholka

[/caption]
It’s the finale of this year’s meteor showers: The Geminids will start appearing on Dec. 7 and should reach peak activity around the 13th and 14th. This shower could put on a display of up to 100+ meteors (shooting stars) per hour under good viewing conditions.

However, conditions this year are not ideal with the presence of a waning gibbous Moon (which will be up from mid-evening until morning). But seeing meteors every few minutes is quite possible. Geminid meteors are often slow and bright with persistent coloured trails which can linger for a while after the meteor has burned up.

There is something unusual about the Geminid meteor shower, as normally meteor showers are caused by the Earth ploughing through the debris streams created by comets and their tails. But the object that created the specific stream of debris associated with the Geminids is not a dusty icy comet, but a rocky asteroid called Phaethon 3200.

Phaethon 3200 belongs to a group of asteroids whose orbit cross the Earth’s. It turns out to be an unusual member of that group: Not only does it pass closer to the Sun than the others but it also has a different colour, suggesting a different composition to most asteroids.

Credit: Adrian West

One of the curious things about the Geminid particles is that they are more solid than meteoroids known to come from comets. This is good for meteor watchers; giving us brighter meteors.

Observations by astronomers over decades have shown that meteor rates have increased as we reach denser parts of the stream.

It is not known exactly when the asteroid was deflected into its current orbit, but if it was originally a comet it would have taken a long time for all the ices to have been lost. However, it is possible that it may have been a stony asteroid with pockets of ice.

We are unsure of the origins and appearance of Phaethon 3200, but its orbit has left us with a unique legacy every December, with little steaks of light known as the Geminid meteor shower.

You will only need your eyes to watch the meteor shower, you do not need telescopes binoculars etc, but you will need to be patient and comfortable. See this handy guide on how to observe meteors

During a meteor shower, meteors originate from a point in the sky called the radiant and this gives rise to the showers name e.g. The Geminids radiant is in Gemini, Perseids radiant is in Perseus etc.

Don’t be mislead by thinking you have to look in a particular part of or direction of the sky, as meteors will appear anywhere and will do so at random. You will notice that if you trace back their path or trajectory it will bring you to the meteor showers radiant. The exception to this rule is when you see a sporadic or rogue meteor.

Tell your friends, tell your familly and tell everyone to look up and join in with the Geminid meteorwatch on the 12th to the 14th December 2011. Use the #meteorwatch hashtag on twitter and visit meteorwatch.org for tips and guides on how to see and enjoy the Geminids and other meteor showers.

Credit: Wally Pacholka

Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet

'Rainbow-Colored Palette' of Southern Hemisphere of Asteroid Vesta from NASA Dawn Orbiter. This mosaic using color data obtained by the framing camera aboard NASA's Dawn spacecraft shows Vesta's southern hemisphere in false color, centered on the Rheasilvia impact basin, about 290 miles (467 kilometers) in diameter with a central mound reaching about 14 miles (23 kilometers) high. The black hole in the middle is data that have been omitted due to the angle between the sun, Vesta and the spacecraft. The green areas suggest the presence of the iron-rich mineral pyroxene or large-sized particles. This mosaic was assembled using images obtained during Dawn's approach to Vesta, at a resolution of 480 meters per pixel. The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

The giant Asteroid Vesta is among the most colorful bodies in our entire solar system and it appears to be much more like a terrestrial planet than a mere asteroid, say scientists deciphering stunning new images and measurements of Vesta received from NASA’s revolutionary Dawn spacecraft. The space probe only recently began circling about the huge asteroid in July after a four year interplanetary journey.

Vesta is a heavily battered and rugged world that’s littered with craters and mysterious grooves and troughs. It is the second most massive object in the Asteroid Belt and formed at nearly the same time as the Solar System some 4.5 Billion years ago.

“The framing cameras show Vesta is one of the most colorful objects in the solar system,” said mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”

Scientists presented the new images and findings from Dawn at the American Geophysical Union meeting this week in San Francisco.

Dawn is the first man-made probe to go into orbit around Vesta.

Comparative View of Terrains on Vesta - Oppia Crater
This image of Oppia Crater combines two separate views of the giant asteroid Vesta obtained by Dawn's framing camera. The far-left image uses near-infrared filters where red is used to represent 750 nanometers, green represents 920 nanometers and blue represents 980 nanometers. The image on the right is an image with colors assigned by scientists, representing different rock or mineral types on Vesta. The data reveal a world of many varied, well-separated layers and ingredients. The reddish color suggests a steep visible spectral slope, and areas of fresh landslides in the inner walls of the crater show deeper green colors. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” Reddy said. “We do not know why Vesta is so special.”

Although many asteroids look like potatoes, Reddy said Vesta reminds him more of an avocado.

Asteroid Vesta is revealed as a ‘rainbow-colored palette’ in a new image mosaic (above) showcasing this alien world of highly diverse rock and mineral types of many well-separated layers and ingredients.

Researchers assigned different colors as markers to represent different rock compositions in the stunning new mosaic of the asteroid’s southern hemisphere.

The green areas in the mosaic suggest the presence of the iron-rich mineral pyroxene or large-sized particles, according to Eleonora Ammannito, from the Visible and Infrared (VIR) spectrometer team of the Italian Space Agency. The ragged surface materials are a mixture of rapidly cooled surface rocks and a deeper layer that cooled more slowly.

What could the other colors represent?

“The surface is very much consistent with the variability in the HED (Howardite-Eucritic-Diogenite) meteorites,” Prof. Chris Russell, Dawn Principal Investigator (UCLA) told Universe Today in an exclusive interview.

“There is Diogenite in varying amounts.”

“The different colors represent in part different ratios of Diogenite to Eucritic material. Other color variation may be due to particle sizes and to aging,” Russell told me.

No evidence of volcanic materials has been detected so far, said David Williams, Dawn participating scientist of Arizona State University, Tucson.

Fresh Impact Craters on Asteroid Vesta
The fresh impact craters in this view are located in the south polar region, which has been partly covered by landslides from the adjacent crater. This would suggest that a layer of loose material covers the Vesta surface. This image combines two separate views of the giant asteroid Vesta obtained by Dawn’s framing camera. The far-left image uses near-infrared filters where red is used to represent 750 nanometers, green represents 920 nanometers and blue represents 980 nanometers. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Before Dawn arrived, researchers expected to observe indications of volcanic activity. So, the lack of findings of volcanism is somewhat surprising. Williams said that past volcanic activity may be masked due to the extensive battering and resultant mixing of the surface regolith.

“More than 10,000 high resolution images of Vesta have been snapped to date by the framing cameras on Dawn,” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

Dawn will spend a year in orbit at Vesta and investigate the asteroid at different altitudes with three on-board science instruments from the US, Germany and Italy.

The probe will soon finish spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), approximately 130 miles (210 kilometers) above Vesta’s surface.

“Dawn remains on course to begin its scientific observations in LAMO on December 12,” said Rayman.

The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. The Visible and Infrared Mapping camera was provided by the Italian Space Agency.

In July 2012, Rayman and the engineering team will fire up Dawn’s ion propulsion system, break orbit and head to Ceres, the largest asteroid and what a number of scientists consider to be a planet itself.

Ceres is believed to harbor thick caches of water ice and therefore could be a potential candidate for life.

Southern Hemisphere of Vesta -Rheasilvia and Older Basin
Colorized shaded-relief map showing location of 375-kilometer-wide Older impact basin that is overlapping with the more recent 500 km (300 mi) wide Rheasilvia impact structure at asteroid Vesta’s South Pole. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read continuing features about Dawn by Ken Kremer starting here:

Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video

Vivid Vesta Vista in Vibrant 3 D from NASA’s Dawn Asteroid Orbiter. Vesta is the second most massive asteroid and is 330 miles (530 km) in diameter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

It’s time to put on your 3-D glasses and go soaring all over the giant asteroid Vesta – thanks to the superlative efforts of Dawn’s international science team.

Now you can enjoy vivid ‘Vestan Vistas’ like you’ve never ever seen before in a vibrant 3 D video newly created by Dawn team member Ralf Jaumann, of the German Aerospace Center (DLR) in Berlin, Germany – see below.

To fully appreciate the rough and tumble of the totally foreign and matchless world that is Vesta, you’ll absolutely have to haul out your trusty red-cyan (or red-blue) 3 D anaglyph glasses.

Then hold on, as you glide along for a global gaze of mysteriously gorgeous equatorial groves ground out by a gargantuan gong, eons ago.

Along the way you’ll see an alien ‘Snowman’ and the remnants of the missing South Pole, including the impressive Rheasilvia impact basin – named after a Vestal virgin – and the massive mountain some 16 miles (25 kilometers) high, or more than twice the height of Mt. Everest.


Video Caption: This 3-D video incorporates images from the framing camera instrument aboard NASA’s Dawn spacecraft from July to August 2011. The images were obtained as Dawn approached Vesta and circled the giant asteroid during the mission’s survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers). To view this video in 3-D use red-green, or red-blue, glasses (left eye: red; right eye: green/blue). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“If you want to know what it’s like to explore a new world like Vesta, this new video gives everyone a chance to see it for themselves,” Jaumann said. “Scientists are poring over these images to learn more about how the craters, hills, grooves and troughs we see were created.”

NASA’s Dawn spacecraft is humanity’s first probe to investigate Vesta, the second most massive body in the main Asteroid Belt between Mars and Jupiter.


Video caption: 2 D rotation movie of Vesta. Compare the 2 D movie to the new 3 D movie. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Indeed Dawn was just honored by Popular Science magazine and recognized as one of three NASA Planetary Science missions to earn a ‘Best of What’s New in 2011’ for innovation in the aviation and space category – along with the Curiosity Mars Science Laboratory (MSL) and MESSENGER Mercury orbiter.

Asteroid Vesta and Mysterious Equatorial Grooves - from Dawn Orbiter
This full view of the giant asteroid Vesta was taken by NASA’s Dawn spacecraft on July 24, 2011, at a distance of 3,200 miles (5,200 kilometers). This view shows impact craters of various sizes and mysterious grooves parallel to the equator. The resolution of this image is about 500 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The images in the 3 D video were snapped between July and August 2011 as Dawn completed the final approach to Vesta, achieved orbit in July 2011 and circled overhead during the mission’s initial survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers) in August.

How was the 3 D movie created?

“The Dawn team consists of a bunch of talented people. One of those talented people is Ralf Jaumann, Dawn co-Investigator from the DLR in Berlin,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.

“Jaumann and the team behind him have stitched together the mosaics we see and they have made shape models of the surface. They are also skilled communicators and have been heroes in getting the Dawn Image of the Day together. I owe them much thanks and recognition for their efforts.”

“They wanted to make and release to the public an anaglyph of the rotating Vesta to share with everyone the virtual thrill of flying over this alien world.”

“I hope everyone who follows the progress of Dawn will enjoy this movie as much as I do.”

“It is just amazing to an old-time space explorer as myself that we can now make planetary exploration so accessible to people all over our globe in their own homes and so soon after we have received the images,” Russell told me.

3 D of the ‘Snowman' Crater
This anaglyph image shows the topography of Vesta's three craters, informally named the "Snowman," obtained by the framing camera instrument aboard Dawn on August 6, 2011. The camera has a resolution of about 260 meters per pixel.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn is now spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), barely 130 miles (210 kilometers) above Vesta’s surface.

“Dawn remains on course and on schedule to begin its scientific observations in LAMO on December 12,” says Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif.

“The focus of LAMO investigations will be on making a census of the atomic constituents with its gamma ray and neutron sensors and on mapping the gravity field in order to determine the interior structure of this protoplanet.”

“Today, Dawn is at about 245 km altitude,” Rayman told Universe Today.

The 3 D video is narrated by Carol Raymond, Dawn’s deputy principal investigator at JPL.

“Dawn’s data thus far have revealed the rugged topography and complex textures of the surface of Vesta, as can be seen in this video”.

“Soon, we’ll add other pieces of the puzzle such as the chemical composition, interior structure, and geologic age to be able to write the history of this remnant protoplanet and its place in the early solar system.”

3 D Image of Vesta's South Polar Region
This anaglyph image of the south polar region was taken on July 9, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft. Each pixel in this image corresponds to roughly 2.2 miles (3.5 kilometers). The anaglyph image shows the rough topography in the south polar area, the large mountain, impact craters, grooves, and steep scarps in three dimensions.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read continuing features about Dawn by Ken Kremer starting here:

NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER

Popular Science magazine names NASA’s Mars Science Laboratory, Dawn and MESSENGER missions as ‘Best of What’s New’ in innovation in 2011. Artist concept shows mosaic of MESSENGER, Mars Science Laboratory and Dawn missions. Credit: NASA/JPL-Caltech

[/caption]

A trio of NASA’s Planetary Science mission’s – Mars Science Laboratory (MSL), Dawn and MESSENGER – has been honored by Popular Science magazine and selected as ‘Best of What’s New’ in innovation in 2011 in the aviation and space category.

The Curiosity Mars Science Laboratory was just launched to the Red Planet on Saturday, Nov. 26 and will search for signs of life while traversing around layered terrain at Gale Crater. Dawn just arrived in orbit around Asteroid Vesta in July 2011. MESSENGER achieved orbit around Planet Mercury in March 2011.

Several of the top mission scientists and engineers provided exclusive comments about the Popular Science recognitions to Universe Today – below.

“Of course we are all very pleased by this selection,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.


Dawn is the first mission ever to specifically investigate the main Asteroid Belt between Mars and Jupiter and will orbit both Vesta and Ceres – a feat enabled solely thanks to the revolutionary ion propulsion system.

“At the same time I must admit we are also not humble about it. Dawn is truly an amazing mission. A low cost mission, using NASA’s advanced technology to enormous scientific advantage. It is really, really a great mission,” Russell told me.

Vesta is the second most massive asteroid and Dawn’s discoveries of a surprisingly dichotomous and battered world has vastly exceeded the team’s expectations.

Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Dawn is NASA at its best: ambitious, exciting, innovative, and productive,” Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif., told Universe Today.

“This interplanetary spaceship is exploring uncharted worlds. I’m delighted Popular Science recognizes what a marvelous undertaking this is.”

JPL manages both Dawn and Mars Science Laboratory for NASA’s Science Mission Directorate in Washington, D.C.

Dawn is an international science mission. The partners include the German Aerospace Center (DLR), the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute.

“Very cool!”, John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.

“MSL packs the most bang for the buck yet sent to Mars.”

Last View of Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC.
Curiosity just before Encapsulation for 8 month long interplanetary Martian Journey and touchdown inside Gale Crater. Credit: Ken Kremer

Curiosity is using an unprecedented precision landing system to touch down inside the 154 km (96 miile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering mountain.

“10 instruments all aimed at a mountain higher than any in the lower 48 states, whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life.”

“It’s like a trip down the Grand Canyon 150 years ago, with the same sense of adventure, but with a lot of high tech equipment,” Grotzinger told me.

MSL also has an international team of over 250 science investigators and instruments spread across the US, Europe and Russia.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

MESSENGER is the first probe to orbit Mercury and the one year primary mission was recently extended by NASA.

Sean Solomon, of the Carnegie Institution of Washington, leads the MESSENGER mission as principal investigator. The Johns Hopkins University Applied Physics Laboratory built and operates the MESSENGER spacecraft for NASA.

“Planetary has 3 missions there… Dawn, MESSENGER, and MSL,” Jim Green proudly said to Universe Today regarding the Popular Science magazine awards. Green is the director, Planetary Science Division, NASA Headquarters, Washington

“Three out of 10 [awards] is a tremendous recognition of the fact that each one of our planetary missions goes to a different environment and takes on new and unique measurements providing us new discoveries and constantly changes how we view nature, ourselves, and our place in the universe.”

The First Solar Day
After its first Mercury solar day (176 Earth days) in orbit, MESSENGER has nearly completed two of its main global imaging campaigns: a monochrome map at 250 m/pixel and an eight-color, 1-km/pixel color map. Apart from small gaps, which will be filled in during the next solar day, these global maps now provide uniform lighting conditions ideal for assessing the form of Mercury’s surface features as well as the color and compositional variations across the planet. The orthographic views seen here, centered at 75° E longitude, are each mosaics of thousands of individual images. At right, images taken through the wide-angle camera filters at 1000, 750, and 430 nm wavelength are displayed in red, green, and blue, respectively.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Read more about the Popular Science citations and awards here
.
Read continuing features about Curiosity, Dawn and MESSENGER by Ken Kremer starting here:

Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
MESSENGER Unveiling Mercurys Hidden Secrets

Student Aids In Tracking Down Near Earth Asteroids

This model of the half-kilometer near-Earth asteroid Golevka, color-coded for gravitational slope. Credit: NASA

[/caption]

It’s one of the scariest scenarios that could face Earth. Can you imagine an asteroid impact? Even if it were a small event, it could have some far-reaching implications for life of all types here on terra firma. Knowing where and what we might be facing has been of constant concern, but one of the biggest problems is that there isn’t enough “eyes on the skies” to go around. There’s always a possibility that a flying space rock could slip through the proverbial cracks and devastate our planet. But, no worries… We’ve got a student to put to the test!

While most asteroids belong to the Jupiter-orbit class and pose absolutely no danger to Earth, there are exceptions to every rule. Known as Near Earth Objects (NEO), these orbiting stones also share our orbit – and our paths could cross. However, the juxtaposition is that we need to uncover as many of these stragglers as we can, document and track them for the most accurate information possible. Why? We need precise orbital information… A “somewhere in the neighborhood” just won’t do. By knowing exactly what’s out there, we stand a true chance of being able to deflect a problem before it arises. Right now a program headed by Mark Trueblood with Robert Crawford (Rincon Ranch Observatory) and Larry Lebofsky (Planetary Science Institute) is being executed at the National Optical Astronomy Observatory to help catalog NEOs – and it’s being assisted by a Beloit College student, Morgan Rehnberg, who developed a computer program called PhAst (for Photometry and Astrometry) that’s available over the Internet.

Because asteroids have a speedy window of observing opportunity, there can be no delays in reporting and tracking data. Time is of the element. While most astronomy targets are of long term imaging, asteroids require multiple digital images which are viewed via the “blink” method – similar to an old nickelodeon movie. At the same time, the coordinates for the NEO must be perfected and then computed. Right ascension and declination must be absolutely spot on. While there are computer programs currently able to do just that, none of them did exactly what’s required to stake the life of planet Earth on. Even though a better software program was required, there simply wasn’t enough time for the group to write it – but Trueblood saw it as the perfect opportunity for a summer student.

Many of us are familiar with the Research Experience for Undergraduates (REU) program, supported by the National Science Foundation and part of the National Optical Astronomy Observatory (NOAO). Not only has the REU made some fine imaging contributions, but they’ve learned what having a career in astronomy is really like and gone on to become professionals themselves. Enter Morgan Rehnberg, who just happened to have the right computer skills needed to tweak the current image viewer program (ATV, written in the code IDL) . Now you have a recipe for checking out as many images as needed in any order, and perform the astrometric (positional) as well as photometric (brightness) analyses.

While Morgan initially put his new software to use on existing image data, the first test happened this October during an observing session using the 2.1m telescope at Kitt Peak National Observatory. It was definitely a yellow alert when the group happened across a Potentially Hazardous Asteroid (PHA) designated as NEO2008 QT3. This wasn’t just a close rock… this was a rock that was going to pass within 50,000 km of Earth! Thanks to Morgan’s software upgrades, the team was able to correctly compute the brightness and distance of the PHA with 50% of the error margin gone. The resulting positional information was then submitted to the Minor Planet Center and accepted.

It’s a good thing they did it… PhAst!

Original Story Source: NOAO News. The computer program PhAST is available at http://www.noao.edu/news/2011/pr1107.php. In addition to the multi-object support, it contains the ability to calibrate images, perform astrometry (using the existing open source packages SExtractor, SCAMP, and missFITS), and construct the reports for the Minor Planet Center.

Asteroid Lutetia… A Piece Of Earth?

This image of the unusual asteroid Lutetia was taken by ESA’s Rosetta probe during its closest approach in July 2010. Lutetia, which is about 100 kilometres across, seems to be a leftover fragment of the same original material that formed the Earth, Venus and Mercury. It is now part of the main asteroid belt, between the orbits of Mars and Jupiter, but its composition suggests that it was originally much closer to the Sun. Credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

[/caption]

According to data received from ESA’s Rosetta spacecraft, ESO’s New Technology Telescope, and NASA telescopes, strange asteroid Lutetia could be a real piece of the rock… the original material that formed the Earth, Venus and Mercury! By examining precious meteors which may have formed at the time of the inner Solar System, scientists have found matching properties which indicate a relationship. Independent Lutetia must have just moved its way out to join in the main asteroid belt…

A team of astronomers from French and North American universities have been hard at work studying asteroid Lutetia spectroscopically. Data sets from the OSIRIS camera on ESA’s Rosetta spacecraft, ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile, and NASA’s Infrared Telescope Facility in Hawaii and Spitzer Space Telescope have been combined to give us a multi-wavelength look at this very different space rock. What they found was a very specific type of meteorite called an enstatite chondrite displayed similar content which matched Lutetia… and what is theorized as the material which dates back to the early Solar System. Chances are very good that enstatite chondrites are the same “stuff” which formed the rocky planets – Earth, Mars and Venus.

“But how did Lutetia escape from the inner Solar System and reach the main asteroid belt?” asks Pierre Vernazza (ESO), the lead author of the paper.

It’s a very good question considering that an estimated less than 2% of the material which formed in the same region of Earth migrated to the main asteroid belt. Within a few million years of formation, this type of “debris” had either been incorporated into the gelling planets or else larger pieces had escaped to a safer, more distant orbit from the Sun. At about 100 kilometers across, Lutetia may have been gravitationally influenced by a close pass to the rocky planets and then further affected by a young Jupiter.

“We think that such an ejection must have happened to Lutetia. It ended up as an interloper in the main asteroid belt and it has been preserved there for four billion years,” continues Pierre Vernazza.

Asteroid Lutetia is a “real looker” and has long been a source of speculation due to its unusual color and surface properties. Only 1% of the asteroids located in the main belt share its rare characteristics.

“Lutetia seems to be the largest, and one of the very few, remnants of such material in the main asteroid belt. For this reason, asteroids like Lutetia represent ideal targets for future sample return missions. We could then study in detail the origin of the rocky planets, including our Earth,” concludes Pierre Vernazza.

Original Story Source: ESO News Release.

Swift Satellite Captures Asteroid 2005 YU55’s Tumbling Flyby

If you want to photograph something in space, what better way than to have a spacecraft take the picture? The Swift Telescope – better known for its study of high-energy outbursts and cosmic explosions – was able to observe the flyby of 2005 YU55, the asteroid that came within 324,600 kilometers (201,700 miles) of Earth this week, and captured its tumbling, rapid motion across the sky.

“Swift’s ultraviolet and X-ray capability gives scientists a unique perspective on comets and asteroids, expanding the spectral window beyond the radio, infrared and optical observations so well handled by big ground-based facilities,” said Sergio Campana, a Swift team member at Brera Observatory in Merate, Italy.” Campana requested that the spacecraft train its telescopes on the asteroid as a target of opportunity.
Continue reading “Swift Satellite Captures Asteroid 2005 YU55’s Tumbling Flyby”

Rare Pallasite Meteorite Found in Missouri

Dr. Randy Korotev at Washington University with the Conception Junction meteorite.
Dr. Randy Korotev at Washington University with the Conception Junction meteorite.

[/caption]

Meteorite hunter Karl Aston finds meteorites not by digging in the ground, but by placing ads in local newspapers. He asked people who found unusual rocks to contact him. Most responses were bum leads, but in 2009 Aston heard from a farmer in the northwestern Missouri of Conception Junction, who found something interesting: An unusually heavy stone buried in a hillside. The overall size was similar to that of a basketball and had a mass of 17 kilograms (37 pounds). Its rusty exterior hid its true nature. When the farmer had sawed off one end, olive-green crystals embedded in a shining metal shone forth. It was one of the rarest types of meteorites, a pallasite, of which only 61 samples are currently known. Recently, scientists at Washington University in St. Louis have gotten involved in an attempt to discover the meteorite’s history.

Pallasites and other meteorites are relics of the formation of the solar system. The most commonly accepted story for their formation is that they represent a boundary region inside larger asteroids where the heat from formation melted the iron and nickel metal which sunk to the core. The lighter crystals would float, and near this transition, there would be some mixing which, when broken apart due to later impacts, would form the pallasites. These asteroids formed in the asteroid belt between Mars and Jupiter and similar layers would likely be found in larger asteroids still present as well as in planets like the Earth. An alternative theory is that the materials formed independently and were mixed more recently due to large impacts.

The rusting fusion crust on the outside of the Conception Junction meteorite disguises it as just another rock, but one glimpse of the interior gives the game away. The olive-green crystals set in lustrous metal are unique to pallasites. Image credit: Dave Gheesling
The rusting fusion crust on the outside of the Conception Junction meteorite disguises it as just another rock, but one glimpse of the interior gives the game away. The olive-green crystals set in lustrous metal are unique to pallasites. Image credit: Dave Gheesling

Within the United States, 20 pallasite meteorites have been discovered. The majority of them belong to a single family of “main group” pallasites due to a similar chemical composition of their olivine crystals. When compared to other samples, the Conception Junction meteorite was unique. Because of this, the sample was given a unique designation this past August, named after the location of discovery. Before the Meteoritical Society recognizes a designation, it is required that a museum or other institutional collection houses a “type specimen” which will make the material available for scholarly research. As such a portion of the sample will be housed at UCLA where the chemical analysis on the metal was performed (the olivine was examined at Washington University).

The rarity of pallasite meteorites makes them uncommonly valuable. Some slices of the Conception Junction meteorite are still available for sale or trade, but don’t expect it to be an impulse buy. While more common stony meteorites sell for a few dollars per gram, pallasite meteorites sell for a few hundred dollars per gram. The overall price is also determined by the condition (some are unstable in Earth’s atmosphere) and whether or not it has a unique history. Meteorites for which the fall was observed are especially prized.

Wondering if the discovered meteorite was part of a larger body, Aston and other meteorite collectors including Robert Ward and Dave Gheesling conducted an extensive search of the region. They looked for 16 months in concentric circles centered on the original discovery location, but did not find any other specimens.

Every Way Devised to Deflect an Asteroid

Concept for a possible gravity tractor. Credit: JPL

With asteroid 2005 YU55 passing close by Earth yesterday, this rather unsettlingly near flyby has many people wondering if we would be able to divert an asteroid that was heading for an intersection with Earth in its orbit.

Of course, as natural disasters go, an asteroid strike on Earth would be extremely bad. Even relatively small space rocks could wipe millions of people off the face of the planet, and for the really big asteroids – like the one that caused the Chicxulub event 65 million years ago – it’s unlikely that humanity would survive. And yet, for all their devastation, asteroids offer a glimmer of hope. An asteroid strike is preventable, given we have the time to deal with it.

“Today no known asteroid is on a collision course with the Earth,” said Dr. David Morrison from NASA’s Near Earth Object (NEO) Program, in a report a few years ago from the Spaceguard Survey that looks for close passing objects. “The Spaceguard Survey does not expect to find any large asteroid that directly threatens us. If, however, such a rock is discovered on a collision course, then we anticipate that we would apply appropriate technology to deflect it before it hits. Asteroid impacts are the only natural hazard that we can, in principle, eliminate entirely.”

There are a few different ways to change an asteroid’s orbital path, but what’s the best way to do it?

First, let’s talk a little about what we’re dealing with. A Near Earth Object is an asteroid or comet whose orbit enters the Earth’s neighborhood – anything that orbits within 195 million kilometers (120 million miles) of Earth’s orbital vicinity. Some objects have been traveling with us for millions years, weaving in and out of our orbital path. Eventually, one of these objects is going to be at the wrong place at the wrong time and impact the Earth.

This chart shows how data from NASA's Wide-field Infrared Survey Explorer, or WISE, has led to revisions in the estimated population of near-Earth asteroids. Credit: NASA/JPL-Caltech

Astronomers everywhere are aware of the problem, and there are several surveys underway to discover and catalog all of the potential Earth crossing asteroids, such as the Spaceguard Survey, working to discover all of the near Earth asteroids larger than 1 km in diameter. Rocks above this size have the potential to end civilization as we know it, so it would be good to know if any of them are heading our way.

But objects as small as 140 meters across will cause regional damage, and even the death of millions if one happens to strike a major city. These smaller rocks are a priority too.

As of November 03, 2011, 8,421 Near-Earth objects have been discovered. Some 830 of these NEOs are asteroids with a diameter of approximately 1 kilometer or larger. Also, 1,262 of these NEOs have been classified as Potentially Hazardous Asteroids that have the potential to make close approaches to the Earth, with a size large enough to cause significant regional damage in the event of impact.

Additionally, recent results from NASA’s Wide-field Infrared Survey Explorer, or WISE spacecraft – which with the other surveys has helped find about 90 percent of the largest near-Earth asteroids — astronomers now estimate there are roughly 19,500 mid-size near-Earth asteroids out there, meaning the majority of these mid-size asteroids remain to be discovered. These are objects between 100 and 1,000 meters (330 and 3,300-feet) wide.

Astronomers are working to create a comprehensive list of every dangerous space rock out there. What if there’s an asteroid with our name on it? What action can we take to reach out and destroy it, or at least change its trajectory away from a collision with the Earth?

We’re not talking about an Armageddon or Deep Impact scenario here; there’s no way to stop an asteroid that’s going to impact us in just a few months — we don’t know how and don’t have the technology. But let’s say we’ve got a few decades warning.

How could we stop it?

NASA's Deep Impact probe hits Comet Tempel 1 (NASA)

Former Apollo astronaut Rusty Schweickart has talked with Universe Today numerous times, and emphasizes that the technology needed to divert an asteroid exists today. “That is, we do not have to go into a big technology development program in order to deflect most asteroids that would pose a threat of impact,” he said. “However, that technology has not been put together in a system design, and not been verified, tested or demonstrated that it could actually deflect an asteroid. So, we need to test everything – test the very sequence we would use for a deflection campaign.”

The best way to test it would be to have NASA, or perhaps a consortium of space agencies, carry out an actual mission to test the entire system.

“Not with an asteroid that threatens an impact,” said Schweickart, “but with an asteroid that is just minding its own business, and we’d have the opportunity to show we can change its orbit slightly in a controlled way.”

Schweickart described two types of “deflection campaigns” for a threatening asteroid: a kinetic impact would roughly “push” the asteroid into a different orbit (a bigger version of what happened with the Deep Impact spacecraft) and a gravity tractor or space tug would slowly pull on the asteroid to precisely trim the resultant change course by using nothing more than the gravitational attraction between the two bodies. Together these two methods comprise a complete deflection campaign, using existing technology.

What are some other options?

Blow it up with nukes
Every Hollywood story dealing with asteroids always involves packing nuclear warheads on board a spaceship and then flying out to blow up the asteroid. Kaboom! Problem solved? Not exactly. The science in these movies is misleading at best, and probably just plain wrong.

Plus, as Schweickart stresses, this is probably a really bad idea. He believes that there the problem of creating many smaller and just as deadly pieces of rock by blowing up a large asteroid (and it might actually increase its destructive power.) But in a report put out by the National Research Council in 2010, scientists admit that nuclear explosions are the only current, practical means for dealing with large NEOs (diameters greater than 1 kilometer) or as a backup for smaller ones if other methods were to fail.

There’s one additional legal catch. Article IV of the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies prohibits countries from using nukes in space. Conventional explosives are permitted, but they just aren’t as effective. But Schweickart worries that NASA may be open to manipulation to put forward the proliferation of space-based nuclear weapons under the guise of international “safety.”

*Update: That said, another mitigation plan also involves nuclear weapons, and is called Nuclear Ablation. This would involve detonating a nuke in close proximity to an asteroid and the radiation vaporizes its surface generating an explosive thrust and a change in velocity in response.

In their 2007 NEO Workshop Report NASA’s Program Analysis and Evaluation determined that such an approach would be 100 times more effective than a kinetic impactor.

Use a Solar Sail

For a more elegant idea rather than blowing it up, physicist Gregory Matloff has studied the concept of using a two-sail solar photon thruster which uses concentrated solar energy. One of the sails, a large parabolic collector sail would constantly face the sun and direct reflected sunlight onto a smaller, moveable second thruster sail that would beam concentrated sunlight against the surface of an asteroid. In theory, the beam would vaporize an area on the surface to create a aerojet of materials that would serve as a propulsion system to alter the trajectory of the NEO.


Tie them Up

Back in 2009 David French, a doctoral candidate in aerospace engineering at North Carolina State University, had the idea of attaching ballast to an asteroid with a tether. By doing this, French explains, “you change the object’s center of mass, effectively changing the object’s orbit and allowing it to pass by the Earth, rather than impacting it.”

Mirror Bees

Another more elegant technique also uses concentrated light to gently move an asteroid. This project, which has been sponsored by the Planetary Society, is called “Mirror Bees.” This uses many small spacecraft — each carrying a mirror — swarming around a dangerous asteroid. The spacecraft could precisely tilt their mirrors to focus sunlight onto a tiny spot on the asteroid, vaporizing the rock and metal, and creating a jet plume of super-heated gases and debris. Alternatively, the satellites could contain powerful lasers pumped by sunlight, and the lasers could be used to vaporize the rock. The asteroid would become the fuel for its own rocket — and slowly, the asteroid would move into a new trajectory.

Artist concept of the Mirror Bees. Credit: The Planetary Society

Lasers

Another interesting technique from the University of Alabama in Huntsville would involve placing a laser system into space, or at a future Moon base. When a potential Earth-crossing asteroid is discovered, the laser would target it and fire for a long period of time. A small amount of material would be knocked off the surface of the asteroid, which would deflect its orbit slightly. Over a long period of time, the asteroid course correction would add up, turning a direct hit into a near miss.

Plastic Wrap

One extremely inventive concept involves using a satellite to wrap an asteroid with ribbons of reflective Mylar sheeting. Covering just half of the asteroid would change its surface from dull to reflective, possibly enough to allow solar pressure to change the asteroid’s trajectory.

Mass Drivers

This idea involves the use of multiple landers to rendezvous and attach to a threatening asteroid, drill into its surface, and eject small amounts of the asteroid material away at high velocity using a mass driver (rail gun or electromagnetic launcher). The effect, when applied over a period of weeks or months, would eventually change the heliocentric velocity of the target asteroid and thereby alter its closest approach to Earth.

Other ideas include attaching a regular rocket motor to the asteroid; painting an asteroid to make it darker or lighter so that it absorbs and re-radiates more or less sunlight, affecting its spin and eventually its orbit; and a shepherding ion beam.

Civil defense (evacuation, sheltering in place, providing emergency infrastructure) is a cost-effective mitigation measure for saving lives from the smallest NEO impact events and would also be necessary part of mitigation for larger events.

The key to deflecting a dangerous asteroid is to find them early so that a plan can be developed. Schweickart said making decisions on how to mitigate the threat once a space rock already on the way is too late, and that all the decisions of what will be done, and how, need to be made now. “The real issue here is getting international cooperation, so we can — in a coordinated way — decide what to do and act before it is too late,” he said. “If we procrastinate and argue about this, we’ll argue our way past the point of where it too late and we’ll take the hit.”

For more information, read The Association of Space Explorers’ International Panel (chaired by Schweickart) report: Asteroid Threats: A Call For Global Response.

National Research Council report: Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. Final Report.

2006 Near Earth Asteroid Survey and Deflection Study

Fraser Cain contributed immensely to this article.