Why Betelgeuse Dimmed

Credit: NASA, ESA, and E. Wheatley (STScI)

Betelgeuse, the big reddish star that is the second brightest point in the constellation Orion (after Rigel), has been puzzling astronomers for years. Starting in October 2019, Belegeuse began to dim considerably, eventually reaching 1/3rd of its normal brightness a few months later. And then, just as mysteriously, it began to brighten again and (as of February 2022) has remained in a normal brightness range. The most likely reason appeared to be a circumstellar dust cloud rather than any changes in the star’s intrinsic brightness.

Using data from NASA’s Hubble Space Telescope (HST) and several other observatories, astronomers have concluded that a Surface Mass Ejection (SME) was the culprit. This event occurred in 2019 when Betelgeuse released a substantial mass of material that cooled to form a circumsolar dust ring, obscuring the star. In contrast to what regularly happens with our Sun during a Coronal Mass Ejections (CME), Betelgeuse ejected roughly 400 billion times as much mass as a typical CME. This is the first time something of this nature has been seen in a normal star’s behavior.

Continue reading “Why Betelgeuse Dimmed”

The Youngest Exoplanet Ever Seen?

Credit: ALMA (ESO/NAOJ/NRAO), S. Dagnello (NRAO/AUI/NSF)

According to the most widely-accepted theory by astronomers, planetary systems begin as massive clouds of gas and dust (aka. a nebula) that experience gravitational collapse at the center to form new stars. The remaining matter in the system forms a “circumplanetary disk” around the star, which gradually accretes to form young planets. Studying disks in the earliest stages of planetary formation could help answer some hard questions about how the Solar System formed over 4.5 billion years ago.

Studying these disks requires observatories capable of capturing light in the far-infrared part of the spectrum – precisely what the Atacama Large Millimeter/submillimeter Array (ALMA) was built for. While studying a young star (AS 209) located about 395 light-years from Earth in the constellation Ophiuchus, a team of scientists observed a circumplanetary disk that appeared to have a Jupiter-mass planet embedded in it. This could constitute the youngest exoplanet ever detected, and its continued study could provide a treasure-trove of data for astronomers.

Continue reading “The Youngest Exoplanet Ever Seen?”

SpaceX Super Heavy Fires Just one of its Engines. Imagine What it’ll be Like When it Fires all 33

Credit: SpaceX

Engineers and technicians at the SpaceX Starbase in Boca Chica, Texas, are working on getting the fully-stacked Starship and Super Heavy prototypes ready for their orbital launch test. The most recent step consisted of a static fire test with the BN7 Super Heavy prototype, where the booster was placed on the orbital launch pad and fired one of its thirty-three Raptor 2 engines. News of the test was shared via SpaceX’s official Twitter account and showed the BN7 blasting the launch pad, leading many to wonder what the orbital launch test will look like!

Continue reading “SpaceX Super Heavy Fires Just one of its Engines. Imagine What it’ll be Like When it Fires all 33”

Hazegrayart Shows how Rocket Lab's Reusable Neutron Rocket Could Work

Credit: Rocket Lab

There’s little doubt that we live in a new Space Age, defined by increasing access, greater competition, and the commercial space industry. The titans of this industry are well known and have even become household names. There are old warhorses like Lockheed Martin, Boeing, Northrop Grumman, and United Launch Alliance and fast-rising stars like SpaceX, Blue Origin, Sierra Nevada, Virgin Galactic, and others. But New Zealand and California-based company Rocket Lab has also made a name for itself in recent years, moving from low-cost expendable rocket launches to reusable rockets.

In particular, their new Neutron Rocket design has been turning some heads since it first debuted in late 2021. The most recent design of this rocket features some very interesting features, which include a new engine, a new shell, and a “Hungry-Hippo” reusable fairing built from advanced carbon composites. Beginning in 2024, Rocket Lab hopes to conduct regular launches with Neutron to service the growing “satellite megaconstellation” market. Thanks to an animator who goes by the handle Hazegrayart, we now have a video of what this might look like.

Continue reading “Hazegrayart Shows how Rocket Lab's Reusable Neutron Rocket Could Work”

A Remote Surgical Robot is Going to the International Space Station

Shane Farritor, Co-Founder and Chief Technology Officer of Virtual Incision. Credit: Craig Chandler/UNL

In the near future, NASA and other space agencies will send astronauts beyond Low Earth Orbit (LEO) for the first time in over fifty years. But unlike the Apollo Era, these missions will consist of astronauts spending extended periods on the Moon and traveling to and from Mars (with a few months of surface operations in between). Beyond that, there’s also the planned commercialization of LEO and cis-Lunar space, meaning millions of people could live aboard space habitats and surface settlements well beyond Earth.

This presents many challenges, which include the possibility that the sick and injured won’t have licensed medical practitioners to perform potentially life-saving surgery. To address this, Professor Shane Farritor and his colleagues at the University of Nebraska-Lincoln’s (UNL) Nebraska Innovation Campus (NIC) have developed the Miniaturized In-vivo Robotic Assistant (MIRA). In 2024, this portable miniaturized robotic-assisted surgery (RAS) platform will be flown to the International Space Station (ISS) for a test mission to evaluate its ability to perform medical procedures in space.

Continue reading “A Remote Surgical Robot is Going to the International Space Station”

Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy

Artist's rendering of the Masten XL-1 lander. Credit: Masten Space Systems

If you’re a fan of the commercial space industry (aka. NewSpace), then the name Masten Space Systems is sure to ring a bell. For years, this California-based aerospace company has been developing delivery systems to accommodate payloads to the Moon, Mars, and beyond. This included Xoie, the lander concept that won the $1 million Northrop Grumman Lunar X-Prize in 2009, their Xombie and Xodiac reusable terrestrial landers, and the in-Flight Alumina Spray Technique (FAST) that would allow lunar landers to create their own landing pads.

But perhaps their biggest feat was the Xelene Lunar Lander (XL-1) that they developed in partnership with the NASA Lunar CATALYST program. This lander was one of several robotic systems enlisted by NASA to deliver cargo to the Moon in support of the Artemis Program. This included the Masten-1 mission, which was scheduled to land a payload Moon’s southern polar region in 2023. The company was scheduled to make a second delivery (Masten-2) by 2024, one year before the first Artemis astronauts arrived. But according to a statement issued on July 28th, the company has filed for Chapter 11 and is bankrupt!

Continue reading “Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy”

Did you Want More Scientific Information About the First set of Images From JWST? Fill Your Boots

James Webb's first images! Credit: NASA/ESA/CSA/STScI

On July 12th, 2022, NASA and its partner agencies released the first James Webb Space Telescope (JWST) observations to the public. These included images and spectra obtained after Webb’s commissioning phase, which included the most-detailed views of galaxy clusters, gravitational lenses, nebulae, merging galaxies, and spectra from an exoplanet’s atmosphere. Less than a month after their release, a paper titled “The JWST Early Release Observations” has been made available that describes the observations and the scientific process that went into making them.

Continue reading “Did you Want More Scientific Information About the First set of Images From JWST? Fill Your Boots”

Jupiter's Giant Moons Prevent it From Having Rings Like Saturn

Saturn and its system of rings, acquired by the Cassini probe. Credit: NASA/JPL-Caltech

When the name Saturn is uttered, what comes to mind? For most people, the answer would probably be, “its fabulous system of rings.” There’s no doubt they are iconic, but what is perhaps lesser-known is that Jupiter, Uranus, and Neptune all have ring systems of their own. However, whereas Saturn’s rings are composed mainly of ice particles (making them highly reflective), Jupiter’s rings are composed mainly of dust grains. Meanwhile, Uranus and Neptune have rings of extremely dark particles known as tholins that are very hard to see. For this reason, none of the other gas giants get much recognition for their rings.

However, the question of why Jupiter doesn’t have larger, more spectacular rings than Saturn has been bothering astronomers for quite some time. As the larger and more massive of the two bodies, Jupiter should have rings that would dwarf Saturn’s by comparison. This mystery may have finally been resolved thanks to new research by a team from UC Riverside. According to their study, Jupiter’s massive moons (aka. Jupiter’s Galilean Moons) prevented it from developing a big, bright, beautiful ring system that would put Saturn’s to shame.

Continue reading “Jupiter's Giant Moons Prevent it From Having Rings Like Saturn”

The James Webb is Measuring Distant Galaxies 5-10 Times Better Than any Other Telescope

Artist conception of the James Webb Space Telescope. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

On December 25th, 2021, after many years of waiting, the James Webb Space Telescope (JWST) finally launched to space. In the sixth-month period that followed, this next-generation observatory unfurled its Sunshield, deployed its primary and secondary mirrors, aligned its mirror segments, and flew to its current position at the Earth-Sun Lagrange 2 (L2) Point. On July 12th, 2022, the first images were released and presented the most-detailed views of the Universe. Shortly thereafter, NASA released an image of the most distant galaxy ever observed (which existed just 300 million years after the Big Bang).

According to a new study by an international team of scientists, the JWST will allow astronomers to obtain accurate mass measurements of early galaxies. Using data from James Webb’s Near-Infrared Camera (NIRCam), which was provided through the GLASS-JWST-Early Release Science (GLASS-ERT) program, the team obtained mass estimates from some of the distant galaxies that were many times more accurate than previous measurements. Their findings illustrate how Webb will revolutionize our understanding of how the earliest galaxies in the Universe grew and evolved.

Continue reading “The James Webb is Measuring Distant Galaxies 5-10 Times Better Than any Other Telescope”

A Black Hole can Tear a Neutron Star Apart in Less Than 2 Seconds

Numerical simulation of a black hole-neutron star merger. Credit and ©: K. Hayashi (Kyoto University)

Almost seven years ago (September 14th, 2015), researchers at the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves (GWs) for the first time. Their results were shared with the world six months later and earned the discovery team the Noble Prize in Physics the following year. Since then, a total of 90 signals have been observed that were created by binary systems of two black holes, two neutron stars, or one of each. This latter scenario presents some very interesting opportunities for astronomers.

If a merger involves a black hole and neutron star, the event will produce GWs and a serious light display! Using data collected from the three black hole-neutron star mergers we’ve detected so far, a team of astrophysicists from Japan and Germany was able to model the complete process of the collision of a black hole with a neutron star, which included everything from the final orbits of the binary to the merger and post-merger phase. Their results could help inform future surveys that are sensitive enough to study mergers and GW events in much greater detail.

Continue reading “A Black Hole can Tear a Neutron Star Apart in Less Than 2 Seconds”