A Minor Lunar Standstill for 2015

Image credit: Dave Dickinson

Think you know the Moon? Whether you love our natural neighbor in space for the lunar and solar eclipses it provides, or you simply decide to ‘pack it in’ from deep sky observing on the weeks bookending Full phase — per chance to catch up on image processing — the Moon has provided humanity with a fine crash course in Celestial Mechanics 101.

Take the Moon’s path in the Fall of 2015 as a peculiar case in point. In fact, we’re nearing what’s known as a minor lunar standstill over the next lunation, the first of the 21st century.

The term lunar standstill is kind of a misnomer. The Moon will continue in its orbit around the Earth like it always does. What’s interesting to note, however, is how shallow the apparent path of the Moon currently is with respect to the ecliptic this year. A technical lunar standstill – the point at which the Moon seems to reverse course from north to south and vice versa – occurs twice a lunation… but not all lunar standstills are created equal.

Image credit:
The path of the ecliptic vs the orbit of the Moon on ‘shallow’ and ‘steep’ years. Image credit: Dave Dickinson

The approximately five degree tilt of the Moon’s path around the Earth with respect to the path of the Earth around the Sun assures that the Moon can actually appear anywhere from 23.5 degrees (the tilt of the Earth’s axis with respect to the ecliptic) plus five degrees above or below the celestial equator, or 28.5 degrees declination north to south.

Such a ‘hilly year’ happens once every 18.6 years, and last occurred in 2006, and won’t take place again until 2025. This orbital phenomenon also results in what’s known as a ‘long nights moon’ when the Full Moon nearest the winter solstice rides high in the sky near the spot the summer  Sun occupied six months earlier, and will do so again six months hence.

To quote Game of Thrones: “Winter is coming,” indeed.

Image credit: Dave Dickinson
Aspects of major a minor lunar standstill years. Note: node crossing refers to the date that the ascending/descending node of the Moon equals an ecliptic value of zero, while the actual dates refer to the times of greatest declination. Image credit: Dave Dickinson

Such is the wacky orbit of the Moon. Unlike the majority of natural satellites in the solar system, the inclination of the Moon’s orbit is not fixed in relation to its host planet’s (in this case, the Earth’s) equator, but instead, to the plane of its path around the Sun, that imaginary line known as the ecliptic. Hence, we say the Moon’s path is either steep and ‘hilly’ near a major lunar standstill, or shallow and almost flat-lined, like this year. In between years are sometimes termed ‘ecliptic-like’ and happen between standstills once every 9.3 years.

Why are the nodes of the ecliptic changing? The chief culprit is the gravitational pull of the Sun, which drags the nodes opposite in the Moon’s direction of travel once around full circle every 18.6 years. To confound things even more, the Moon’s line of apsides (the imaginary line bisecting its orbit from apogee to perigee) is moving in the opposite direction and completes one revolution every 8.85 years.

This also means that the Moon can wander off the beaten trail of the zodiac constellations well worn by the classical planets. The Moon can actually transit 18 constellations: the 12 familiar zodiacal constellations, plus Orion, Ophiuchus, Sextans, Corvus, Auriga and Cetus.

Image credit
The path of the ecliptic versus astronomical constellations. Image credit: Wikimedia/Public Domain

This, along with the 26,000 plus year precession of the equinoxes, also means that the stars the Moon can occult along its path are slowly changing as well.

There’s lots of evidence to suggest that ancient astronomers knew something of the cycle of lunar standstills as well. The modern term comes from archaeologist Alexander Thom’s 1971 book Megalithic Lunar Observatories. There is evidence to suggest Bronze Age cultures in the United Kingdom took note of the changing path of the Moon. The famous ‘Sun dagger’ rock alignment of Fajada Butte in Chaco Canyon, New Mexico may have also doubled as a similar sort of calendar that not only marked the yearly solstices and equinoxes, but longer periods of the cycles of the Moon as well.

Image credit:
Solar and Lunar events versus the Fajada Butte sun dagger petroglyph. Image credit: Dave Dickinson

Knowing the gear clock tick of the heavens gave cultures an edge, allowing them to predict when to sow, reap, hunt and prepare for the onset of winter.

The 2015 minor lunar standstill also impacts this years’ Full Harvest Moon as well. Ordinarily on most years, the evening angle of the ecliptic versus the eastern horizon near the autumnal equinox conspires to make the Moon seem to ‘freeze’ in its nightly path, rising scant minutes later on successive evenings. This effect is most dramatic as seen from mid-northern latitudes in September on years around the major lunar standstill.

Image credit:
The motion of the Harvest Moon in 2015 vs 2025 versus the horizon as seen from latitude 30 degrees north. The red arrow denotes 24 hours of motion. Image credit: Stellarium

Not so in 2015. The Full Harvest Moon occurs on September 28th at 2:50 UT (10:50 PM EDT on the evening of the 27th) about four and half days after the autumnal equinox. As seen from latitude 40 degrees north, however, the Moon will rise nearly 40 minutes later each successive evening. Check out these Moonrise times as seen from the U.S. capital near 39 degrees north latitude:

Washington D.C.

Sept 25th 5:28 PM

Sept 26th 6:09 PM

Sept 27th 6:49 PM

Sept 28th: 7:29 PM

Sept 29th: 8:11 PM

As you can see, the minor lunar standstill of 2015 ameliorates the usual impact of the Harvest Moon… though we do have the final total lunar eclipse of 2015 to compensate.

More on that to come next week!

SOHO Nears 3,000 Comet Discoveries

A fine sungrazer nears its doom as seen via SOHOs LASCO C2 camera. Image credit: NASA/ESA/SOHO/NRLSungrazers

It’s a discovery that could come any day now.

The Solar Heliospheric Observatory spacecraft known as SOHO is set to cross the 3,000 comet discovery threshold this month.  Launched atop an Atlas II rocket on December 2nd, 1995, SOHO is a joint NASA/ESA mission, and has observed the Sun now for almost 20 years from the sunward L1 lagrange point. That fact is amazing enough, as SOHO has already followed the goings on of our tempestuous host star for nearly two full solar cycles.

And though SOHO wasn’t initially designed as a comet hunter extraordinaire, it has gone on to discover far more comets than anyone—human or robotic.

soho_photo7
SOHO on Earth. Image credit: NASA/ESA/SOHO

The U.S. Naval Research Laboratory’s (NRL) sungrazer website lists the discovery count as 2,987 as of July 31, 2015, with more comets awaiting verification daily. “In the past, SOHO has often discovered as many as four or five comets in a single day,” Karl Battams, a solar scientist at the NRL told Universe Today.  “Suffice to say, it really could be any day now, given how close we are to 3,000! I actually expected it to be a month ago, so I’m surprised it’s dragging out like this. Predicting comets is fraught with uncertainty!”

Image credit:

Part of what gives SOHO an edge is its LASCO (the Large Angle and Spectrometric Coronagraph) C2 and C3 coronagraphs. With a field of view about 15 degrees wide, the C3 imager monitors the faint corona of the Sun, while blocking its dazzling disk. The corona is the pearly white outer atmosphere of the Sun, and is about half as bright as a Full Moon. On Earth, we only see the corona briefly during a total solar eclipse.  SOHO routinely sees sungrazing comets ‘photobomb’ the view of its LASCO C3 camera, sometimes to the tune of more than 200 a year.

Comet NEAT makes its way through the field of view of SOHO's LASCO C2 camera in 2003. Image credit: NASA/ESA/NRL/Sungrazers
Comet NEAT makes its way through the field of view of SOHO’s LASCO C2 camera in 2003. Image credit: NASA/ESA/NRL/Sungrazers

SOHO has rewritten the history of sungrazers. How far we’ve come: flashback to 1979, and less than a dozen sungrazers were known, one being the famous Comet Ikeya-Seki in 1965. Early space-based platforms such as Solwind and SMM sported early coronagraphs, and paved the way for SOHO. Think about that for a moment; a vast majority of the cometary population of the solar system was simply sliding by, unobserved from the ground. And this was only a generation ago.

Most of what SOHO sees are what’s termed as Kreutz group sungrazers. First theorized by astronomer Heinrich Kreutz in 1888, SOHO has given researchers the ability to classify and characterize the orbits of these doomed comets. These sungrazers nearly always incinerate during their perihelion passage. C/2011 W3 Lovejoy was a famous exception, which passed about 140,000 kilometers from the surface of the Sun on December 16th, 2011 and went on to become a fine southern hemisphere comet.

“We knew little of the Kreutz population, other than that it seemed there were ‘a few’ objects on the Kreutz path,” Battams said. “I would say that probably when the Sungrazer Project was launched in late 2000 was the point at which the team realized that this was something more than just seeing an occasional comet.”

The typical track of a Kreutz-group comet. Click here for the full diagram of C2/C3 tracks throughout the year. Image Credit: NASA/ESA/SOHO
The typical track of a Kreutz-group comet. Click here for the full diagram of C2/C3 tracks throughout the year. Image Credit: NASA/ESA/SOHO

Kreutz comets also have seasons and predictable directions of approach along the ecliptic as seen from SOHO’s point of view. Some periodic comets, such as 96P Machholz, — which orbits the Sun once every six years — have become old friends. To date, SOHO has observed 96P Machholz four times.

Upping the Comet Hunting Game

But here’s the amazing second half of the tale. Legions of dedicated amateurs make these discoveries, patiently combing over daily images sent back by SOHO. In many ways, SOHO has grown up with the rise of the internet. Think about it: what was your internet surfing experience like way back in 1995? Karl Battams at NRL relays these discoveries to the Central Bureau for Astronomical Telegrams, the clearing house for potential comet discoveries. Founded in 1882 and based at Harvard College Observatory since 1965, CBAT actually received its last ‘telegram’ announcing the possible discovery that would become Comet Hale-Bopp in 1995.

The rise of automated surveys and satellites such as SOHO has definitely upped the game. To date, the all-time human champ amongst comet hunters is Robert H. McNaught, with the discovery of 44 long-period and 26 short-period comets.

And I think we can all remember where we were on U.S. Thanksgiving Day 2013, as SOHO gave us a front row seat to the demise of Comet ISON. It’s been a roller coaster ride for sure, and it’s hard to imagine a time now when we didn’t have SOHO as a daily resource. Heck, it’s just fun to watch planets transit the field of view of SOHO, as they move from the dawn to dusk sky and back again.

Looking at the "SOHO Bump" and the rise of automated comet hunters in the early 21st century. Image credit: Dave Dickinson
Looking at the “SOHO Bump” and the rise of automated comet hunters in the early 21st century. Image credit: Dave Dickinson

Comet hunting via SOHO is fun and easy to do, though yes, there are lots of eyeballs out there looking, so you have some pretty dedicated competition. Patience is key, and there’s also a dedicated message board describing the latest discoveries and known objects entering the field of view that have already been identified.

“What’s the future of SOHO? “December is SOHO’s 20th anniversary, so that’s another milestone,” Battams said. “Beyond that, who knows? Engineers designed SOHO to operate for two years, and with no intention of comet discovery; it has lasted 20 years and re-written the history books for comets. It remains the only coronagraph we have along the Sun-Earth line, so for space weather forecasting it remains a unique and valuable asset.”

Congrats, and be sure to follow Karl Battam’s @SungrazerComets account on Twitter… number 3,000 could be discovered any day now!

Kicking Off Eclipse Season: Our Guide to the September 13th Partial Solar Eclipse

The March 11th, 2013 partial solar eclipse as seen from Saida, Lebanon. Image credit and copyright: Ziad El Zaatari

Eclipse season 2 of 2 for 2015 is nigh this weekend, book-ended by a partial solar eclipse on September 13th, and a total lunar eclipse on September 28th.

First, the bad news. This weekend’s partial solar eclipse only touches down across the very southern tip of the African continent, Madagascar, a few remote stations in Antarctica, and a few wind-swept islands in the southern Indian Ocean.  More than likely, the only views afforded humanity by Sunday’s partial solar eclipse will come out of South Africa, where the eclipse will be about 40% partial around 5:30 Universal Time (UT).

Image credit:
An animation of the September 13th eclipse. Image credit: NASA/GSFC/A.T. Sinclair

It’s the curious circumstances surrounding the September 13th eclipse that conspire to hide it from the majority of humanity. First, the Moon reaches its ascending node along the plane of the ecliptic at 4:38 UT on Monday, September 14th, nearly 22 hours after New phase. The umbra, or dark inner core of the shadow of Earth’s Moon ‘misses’ the Earth, passing about 380 kilometres or 230 miles above the South Pole. The outer penumbra of the Moon’s shadow just brushes the planet Earth, assuring a 79% maximum obscuration of the Sun over Antarctica around 6:55 UT.

Second, the Moon also reaches its most distant apogee for 2015 on September 14th at 11:29 UT, 406,465 kilometers from the Earth. This is just over 28 hours after New, assuring that the umbra of the Moon falls 25,000 kilometres short of striking the Earth. The eclipse would be an annular one, even if we were in line to see it.

Image Credit:
The footprint of Sunday’s eclipse. Image Credit: Michael Zeiler/TheGreatAmericanEclipse.com

Observers will see the eclipse begin at sunrise over South Africa and the Kalahari Desert, great for photography and catching the eclipse along with foreground objects. Observers will need to follow solar observing safety protocols during all stages of the eclipse. A high value neutral density filter will bring out the silhouette of foreground objects while preserving the image of the partially eclipsed Sun, but remember that such a filter is for photographic use only.

Image credit:
Maximum obscuration of the Sun, with times and solar elevation for four selected sites. Image credit: Stellarium

P1, or the first contact of the Moon’s penumbra with the Earth occurs on the morning of the 13th over the Angola/South Africa border at 4:41 UT, and the shadow footprint races across the southern Indian Ocean to depart Earth near the Antarctic coast (P4) at 09:06 UT.

New Moon occurs on September 13th at 6:43 UT, marking the start of lunation 1147.

Image credit:
A close-up of the eclipse circumstances for southern Africa. Image credit: Michael Zeiler/TheGreatAmericanEclipse.com

For saros buffs, this eclipse is a part of saros series 125 (member 54 of 73). Saros 125 started on February 4th, 1060 and produced just four total eclipses in the late 13th and early 14th centuries. Mark your calendars, as this saros will end with a brief partial eclipse on April 8th, 2358. The final total eclipse for this particular saros crossed over central Europe on July 16th, 1330, when an observation by monks near Prague noted “the Sun was so greatly obscured that of its great body, only a small extremity like a three night old Moon was seen.”

Image credit: Dave Dickinson
A partially eclipsed Sun rising over the Vehicle Assembly Building at the Kennedy Space Center. Image credit: Dave Dickinson

Missing out on the eclipse? The good folks over at Slooh have got you covered, with a live webcast set to start at 4:30 UT/12:30 AM EDT.

Planning an ad-hoc webcast of your own from the eclipse viewing zone? Let us know!

There are also some chances to nab the eclipse from space via solar observing satellites in low Earth orbit:

The European Space Agency’s Proba-2 will see eclipses on the following passes – 5:01 UT (partial)/6:31 UT (annular) 8:00 UT (partial).

Image credit:
The view from ESA’s Proba-2 spacecraft at 6:31 UT. Image credit: Starry Night Education Software

And JAXA’s Hinode mission will see the same at the following times: 5:56 UT (Partial)/7:46 UT (partial). Unfortunately, there are no good circumstances for an ISS transit this time around, as the ISS never passes far enough south in its orbit.

Looking for more? You can always participate in the exciting pastime of slender moonspotting within 24 hours post or prior to the New Moon worldwide. This feat of extreme visual athletics favors the morning of Saturday, September 12th to sight the slim waning crescent Moon the morning before the eclipse, or the evenings of September 13th and 14th, to spy the waxing crescent Moon on the evenings after.

Image credit:
Predicted locations worldwide for the first sightings of the thin waxing/waning crescent Moon.  Image credit: Dave Dickinson

And this eclipse sets us up for the grand finale: the last total lunar eclipse of the ongoing tetrad on September 28th, visible from North America and Europe. And yes, the Moon will be near perigee to boot… expect Super/Blood Moon wackiness to ensue.

Watch for our complete guide to the upcoming lunar eclipse, with observational tips, factoids, eclipse lunacy and more!

 

A Fiery End for Kosmos 1315 Over Hawaii

Reentry of Kosmos-1315 captured by Joshua Lambus. Click here to see the full video.

A relic of the Cold War surprised beach-goers and Hawaiian islands residents Sunday night, as Kosmos-1315 reentered the Earth’s atmosphere in a dramatic display.

The reentry occurred right around 11:00 PM Sunday night on August 30th local time (Hawaii is 10 hours behind Universal Time). Folks in the satellite tracking community had been following the predicted reentry for some time, which was projected for August 31st at 10:56 UT +/- an hour. That puts the Hawaii sighting right at the beginning of the window.

Image credit:
Kosmos-1315 reenters over the Pacific Ocean near Hawaii. Image credit: Lance Owens
“We were outside, about 11:00. I have a TV outside on our lanai (deck) and we had watched the 10:00 news, when we were just wrapping it up for the evening,” Hawaiian resident Lance Owens told Universe Today. “My wife sees this unreal thing in the sky. Our first description was it looked like someone dragging a “sparkler” across our sky like those old spaceship movies. It took at least a minute to get across our skyline. It appeared to be breaking up right in front of our eyes. I did not hear any boom, but the visuals were incredible!”
Image credit
A close-up of the reentry of Kosmos 1315 from Sunday night. Image credit: Lance Owens

Kosmos 1315 (Sometimes listed as Cosmos 1315) was an electronic signal intelligence (ELINT) satellite launched from the Plesetsk Cosmodrome in the then Soviet Union on October 13th, 1981. First developed in the late 1960s, Kosmos 1315 was a typical Tselina-D type component of the two-satellite Tselina ELINT system. Kosmos 1315 was launched atop a Vostok-2M rocket, the booster for which still remains in orbit today as NORAD ID 1981-103B. Kosmos 1315 was in a 533 x 574 km low Earth orbit.

Long-time satellite tracker Ted Molczan has been compiling a list of reentries that goes back to the dawn of the Space Age, and notes that this was the 256th reentry sighting he’s confirmed in his cataloging effort.

“Objects launched by Russia account for 205 sightings or 80 percent, followed by the U.S., which accounts for 40 sightings or 16 percent. China, Europe and Japan account for the remaining 4 percent,” Molczan told Universe Today. “Considering the vast areas of the Earth that have been under-reported, the total number of reentries seen during the Space Age probably is between 500 and 1000, the large majority lost to history.”

This was a fine example of a classic reentry versus a typical fireball or meteor train. Satellites typically have a slower reentry velocity, and you can see this in several of the videos captured of the event. Most fireball captures come from security and dashboard cams (remember Chelyabinsk?) or cameras that are already up and running recording another event, such as a concert or a football game. The famous Peekskill meteor in 1992 was captured in the background during a high school football game. Remember, during Chelyabinsk, the very first images of the event were from dashcams; minutes later, after everyone rushed to aim their hastily deployed mobile phone cameras at the contrail, we got the recordings of the blast wave.  The very fact that several folks grabbed their phones and managed to capture the reentry in progress on Sunday night (how fast can YOU have your phone out, camera running?) speaks to the slow, stately traverse typical of a satellite reentry.

The position of Kosmos-1315 at 9:17 UT. Image credit: Orbitron
The position of Kosmos-1315 at 9:17 UT. Image credit: Orbitron

…and folks on social media often try to get in on the hype during a breaking story involving a meteor train or fireball event. Feel free to try to be creative, but trust us, we’ve seen ‘em all. Some ‘meteor wrongs’ (to paraphrase Meteorite Man Geoff Notkin) that typically get recycled and advertised as new videos are: the reentries of Mir, Hayabasa, the aforementioned Peekskill event, Chelyabinsk, and screen grabs from the film Armageddon.

A typical Tselina-D style Kosmos series satellite. Image credit: Yuzhnoye Design
A typical Tselina-D style Kosmos series satellite. Image credit: Yuzhnoye Design

“As is common with reentries, a few people reported the phenomenon as a UFO. A couple of witnesses perceived the glowing fragments as individual craft of some kind,” Molczan told Universe Today. “Satellite orbits closely follow the curvature of the Earth’s surface, and they continue to do so as they begin their final descent during reentry. As reentry proceeds, velocity is lost due to drag, causing the descent to gradually become steeper, but to an observer, the motion appears to be nearly horizontal. By the time an object descends below about 30 kilometers, it will have lost nearly all of its forward velocity, and from there, any surviving fragments will descend almost vertically to the Earth.”

This final descent is similar to what’s known as ‘dark flight’ prior to a meteorite impact.

And though we usually get a few high interest reentries such as Phobos-Grunt or UARS every year, space junk is reentering worldwide weekly. The Aerospace Corp. keeps a running list of upcoming reentries, and the See-Sat-L message board is a great source of fast-breaking news.

It’s definitely a space junk shooting gallery out there. Keep those smartphones charged up and handy, and keep watching the skies!

Watch the Moon Occult Aldebaran This Weekend

Image credit:

How about that perigee Full Moon this past weekend? Thus begins ‘Supermoon season’ for 2015, as this month’s Full Moon occurs even closer to perigee — less than an hour apart, in fact — on September 28th, with the final total lunar eclipse of the ongoing tetrad to boot. Keep an eye on Luna this week, as it crosses into the early AM sky for several key dates with destiny just prior to the start of the second and final eclipse season for 2015.

The big event later this week is a passage of the waning gibbous Moon through the Hyades open cluster on the morning of Saturday, September 5th, climaxing with a dramatic occultation of the bright star Aldebaran on the same morning. This is part of a series of 49 ongoing occultations of Aldebaran by the Moon, one for each lunation extending out to September 2018.

Image credit:
The visibility footprint for the September 5th occultation of Aldebaran by the Moon. Image credit: Occult 4.1

This weekend’s event will occur at moonrise under nighttime skies for the northeastern United States and the Canadian Maritimes, and near dawn and under daytime skies for observers in Western Europe and Northern Africa eastward. We observed an occultation of Aldebaran by the Moon under daytime skies from Alaska back in the late 1990s, and can attest that the star is indeed visible near the limb of the Moon in binoculars. A good deep blue sky is key to spotting +1 magnitude Aldebaran in the daytime.

London 711 AM
The view from London UK at 7:11 AM local. Image Credit: Starry Night Education software

During waning phase, the bright edge of the Moon is always leading, meaning Aldebaran will ingress (wink out) on the bright limb of the 52% illuminated Moon, and egress (reappear) along its dark limb.

Here are some key times for ingress/egress by location (all times quoted are local and incorporate daylight saving/summer time):

Washington D.C.

Moonrise: 11:53 PM

Ingress: N/A (before Moonrise)

Egress: 12:38 AM (altitude = 8 degrees)

Boston

Moonrise: 11:22 PM

Ingress 11:57 PM (altitude = 6 degrees)

Egress: 12:41 AM (altitude = 14 degrees)

Gander, Newfoundland

Moonrise: 11:26 PM

Ingress: 1:37 AM (altitude = 20 degrees)

Egress: 2:26 AM (altitude = 28 degrees)

London

Moonrise: 11:04 PM

Ingress: 5:50 AM (altitude = 53 degrees)

Sunrise: 6:18 AM

Egress: 7:07 AM (altitude = 54 degrees)

Paris

Moonrise: 12:02 AM

Ingress: 6:53 AM (altitude = 56 degrees)

Sunrise: 7:12 AM

Egress: 8:10 AM (altitude = 57 degrees)

Occultations of bright stars by the Moon are one of the few times besides a solar or lunar eclipse when you can actually discern the one degree per every two and half hours orbital motion of the Moon in real time. The Moon moves just a little more than its own apparent diameter as seen from the Earth every hour. This also sets us up for four more fine occultations of Aldebaran by the Moon alternating between Europe and North America on October 2nd, October 29th, November 26th, and December 23rd.

Image credit:
The final four occultations of Aldebaran by the Moon for 2015.  Image credit: Occult 4.1

The bright stars Antares, Spica and Regulus also lie along the path of the Moon, which is inclined about five degrees relative to the ecliptic. A series of occultations of Regulus by the Moon begins in late 2016.

Fun fact: The Moon used to occult the bright star Pollux in the constellation Gemini until about 2100 years ago in 117 BC. The 26,000 year cycle known as the Precession of the Equinoxes has since carried the star out of the Moon’s path.

Observations of occultations — especially dramatic grazes spied right from the edge of the path — can be used to construct a profile of the lunar limb. A step-wise ‘wink out’ of a star during an occultation can also betray the existence of a close binary.

Recording an occultation of a star by the Moon is as easy as running video while shooting the Moon. The dark limb egress of Aldebaran will be much easier to record during the September 5th event than the ingress of the star against the bright limb. I typically run video with a DLSR directly coupled to a Celestron 8” SCT telescope, with WWV radio running in the background for a precise audio timing of the event. Remember, the Moon will also be transiting the Hyades star cluster as well, covering and uncovering many fainter stars for observers worldwide around the same time frame.

Sept 5 5UT
The Last Quarter Moon versus Aldebaran and the Hyades on September 5th at ~5:00 UT. Image credit: Stellarium

Now for the ‘wow’ factor. The Moon is about 240,000 miles (400,000 km), or 1 1/4 light seconds distant. Aldebaran is 65 light years away, and said light left the star around 1950, only to have its light ‘rejected’ during the very last second by the craggy mountains along the lunar limb. And though Aldebaran appears to be a member of the Hyades, it isn’t, as the open cluster sits 153 light years from Earth.

Image credit:
The Moon crosses through the Hyades in January 2015. Image credit and copyright: Nell Ghosh

And watch that Moon, as it then heads for a partial solar eclipse as seen from South Africa and the southern Indian Ocean on September 13th, and a total lunar eclipse visible from North America and Europe on September 28th.

Expect more to come, with complete guides to both on Universe Today!

Ice Giants at Opposition

Moons

It seems as if the planets are fleeing the evening sky, just as the Fall school star party season is getting underway. Venus and Mars have entered the morning sky, and Jupiter reaches solar conjunction this week. Even glorious Saturn has passed eastern quadrature, and will soon depart evening skies.

Enter the ice giants, Uranus and Neptune. Both reach opposition for 2015 over the next two months, and the time to cross these two out solar system planets off your life list is now.

Aug 26
Looking east at dusk in late August, as Uranus and Neptune rise. Image credit: Stellarium

First up, the planet Neptune reaches opposition next week in the constellation Aquarius on the night of August 31st/September 1st. Shining at magnitude +7.8, Neptune spends the remainder of 2015 about three degrees southwest of the +3.7 magnitude star Lambda Aquarii.  It’s possible to spot Neptune using binoculars, and about x100 magnification in a telescope eyepiece will just resolve the blue-grey 2.3 arc second disc of the planet. Though Neptune has 14 known moons, just one, Triton, is within reach of a backyard telescope. Triton shines at magnitude +13.5 (comparable to Pluto), and orbits Neptune in a retrograde path once every 6 days, getting a maximum of 15” from the disk of the planet.

Nep Aug-Nov Triton aug 31
The path of Neptune from late August through early November 2015. Inset: the position of Neptune’s moon Triton on the evening of August 31st: Image credit: Starry Night Education software

Uranus reaches opposition on October 11th in the adjacent constellation Pisces.  Keep an eye on Uranus, as it nears the bright +5.2 magnitude star Zeta Piscium towards the end on 2015. Shining at magnitude +5.7 with a 3.6 arc second disk, Uranus hovers just on the edge of naked eye visibility from a dark sky site.

Credit
Uranus, left of the eclipsed Moon last October. Image credit and copyright: A Nartist

It’ll be worth hunting for Uranus on the night of September 27th/28th, when it sits 15 degrees east of the eclipsed Moon. Uranus turned up in many images of last Fall’s total lunar eclipse.  This will be the final total lunar eclipse of the current tetrad, and the Moon will occult Uranus the evening after for the South Atlantic. This is part of a series of 19 ongoing occultations of Uranus by the Moon worldwide, which started in August 2014, and end on December 20th, 2015. After that, the Moon will move on and begin occulting Neptune next year in June through the end of 2017.

Occultation
The visibility footprint of the September 29th occultation of Uranus by the Moon. Image credit: Occult 4.0.

Uranus has 27 known moons, four of which (Oberon, Ariel, Umbriel and Titania) are visible in a large backyard telescope. See our extensive article on hunting the moons of the solar system for more info, and the JPL/PDS rings node for corkscrew finder charts.

Uranus aug-dec moons oct12
The path of Uranus, from late August through early December 2015. Inset: the position of the moons of Uranus on the evening of October 12th. Image credit: Starry Night Education software

The two outermost worlds have a fascinating entwined history. William Herschel discovered Uranus on the night of March 13th, 1781. We can be thankful that the proposed name ‘George’ after William’s benefactor King George the III didn’t stick. Herschel initially thought he’d discovered a comet, until he followed the slow motion of Uranus over several nights and realized that it had to be something large orbiting at a great distance from the Sun. Keep in mind, Uranus and Neptune both crept onto star charts unnoticed pre-1781. Galileo even famously sketched Neptune near Jupiter in 1612!  Early astronomers simply considered the classical solar system out to Saturn as complete, end of story.

Credit
A classic 7″ Merz refractor at the Quito observatory, nearly identical to the instrument that first spied Neptune. Image Credit: Dave Dickinson

And the hunt was on. Astronomers soon realized that Uranus wasn’t staying put: something farther still from the Sun was tugging at its orbit. Mathematician Urbain Le Verrier predicted the position of the unseen planet, and on and on the night of September 23rd, 1846, astronomers at the Berlin observatory spied Neptune.

In a way, those early 19th century astronomers were lucky. Neptune and Uranus had just passed each other during a close encounter in 1821. Otherwise, Neptune might’ve remained hidden for several more decades. The synodic period of the two planets—that is, the time it takes the planets to return to opposition—differ by about 2-3 days. The very first documented conjunction of Neptune and Uranus occurred back in 1993, and won’t occur again until 2164. Heck, In 2010, Neptune completed its first orbit since discovery!

To date, only one mission, Voyager 2, has given us a close-up look at Uranus and Neptune during brief flybys. The final planetary encounter for Voyager 2 occurred in late August in 1989, when the spacecraft passed 4,800 kilometres (3,000 miles) above the north pole of Neptune.

All thoughts to ponder as you hunt for the outer ice giants. Sure, they’re tiny dots, but as with many nighttime treats, the ‘wow’ factor comes with just what you’re seeing, and the amazing story behind it.

Astro-Challenge: Splitting 44 Boötis

44 Bootis from the Palomar Sky Survey. Image credit: The CDS/Aladin previewer

How good are your optics? Nothing can challenge the resolution of a large light bucket telescope, like attempting to split close double stars. This week, we’d like to highlight a curious triple star system that presents a supreme challenge over the next few years and will ‘keep on giving’ for decades to come.

Image credit: Stellarium
The location of 44 Boötis in the constellation of the Herdsman. Image credit: Stellarium click image to enlarge

The star system in question is 44 Boötis, in the umlaut-adorned constellation of Boötes the herdsman. Boötes is still riding high to the west at dusk for northern hemisphere observers in late August, providing observers a chance to split the pair during prime-time viewing hours.

Image credit:
A close up of the five degree wide field of view for 44 Boötis. Note: magnitudes for nearby stars are noted minus decimal points.  Image credit: Starry Night Education software.

Sometimes also referred to as Iota Boötis, William Herschel first measured the angular separation of the pair in 1781, and F.G.W. Struve discovered the binary nature of 44 Boötis in 1832. Back then, the pair was headed towards a maximum apparent separation of 5 arc seconds in 1870. We call this point apastron. A fast forward to 2015 sees the situation reversed, as the pair currently sits about an arc second apart, and closing. 44 Boötis will pass a periastron of just 0.23” from the primary in 2020. Can you split the pair now? How ‘bout in 2016 onward? Can you recover the split, post 2020?

Image credit:
The apparent orbit of 44 Boötis over the next two centuries. Image credit: Dave Dickinson

The physical parameters of the system are amazing. About 42 light years distant, 44 Boötis A is 1.05 times as massive as our Sun, and shines at magnitude +4.8. The B component is in a 210 year elliptical orbit with a semi-major axis of 49 AUs (for comparison, Pluto at aphelion is 49 AUs from the Sun), and is itself a curious contact spectroscopic binary about one magnitude fainter. Though you won’t be able to split the B-C pair with a backyard telescope, they betray their presence to professional instruments due to their intertwined spectra. 44 Boötis B and C have a combined mass of 1.5 times that of our Sun, and orbit each other once every 6.4 hours at a center-to-center distance of only 750,000 miles, or only 3 times the distance from Earth to the Moon:

Image credit:
The strange system of 44 Bootis B-C. Note the diameters of the Earth and Moon aren’t to scale. Image credit: Dave Dickinson

That’s close enough that the pair shares a merging atmosphere. It’s a mystery as to just how these types of contact binary stars form, and it would be fascinating to see 44 Boötis up close. This fast spin along our line of sight also means that 44 Boötis B-C varies in brightness by about half a magnitude over a six hour span.

Image credit: NASA/CXC/M.Weiss
An artist’s conception of the B-C pair of the 44 Boötis system, using data from the Chandra X-ray observatory.  Image credit: NASA/CXC/M.Weiss

Though the visual 44 Boötis A-B pair doesn’t quite have an orbital period that the average humanoid could expect to live through, beginning amateur astronomers can watch as the pair once again heads towards a wide an easy 5” split during apastron around 2080.

Collimation, or the near-perfect alignment of optics, is key to the splitting close binaries, and also serves as a good test of a telescope and the stability of the atmosphere. A well-collimated scope will display stars with sharp round Airy disks, looking like luminescent circular ripples in a pond. We call the lower boundary to splitting double stars the Dawes Limit, and on most nights, atmospheric seeing will limit this to about an arc second.

But there’s another method that you can use to ‘split’ doubles closer than an arc second, known as interferometry. This relies on observing the star by use of a filtering mask with two slits that vary in distance across the aperture of the scope. When the mask is rotated to the appropriate position angle and the slits are adjusted properly, the ‘fringes’ of the star snap into focus. A formula utilizing the slit separation can then calculate the separation of the close binary pair. This method works with stars that are A). Closer than 1” separation, and B). Vary by not more than a magnitude in brightness difference.

Image credit:
A homemade cardboard interferometer. Image credit: Dave Dickinson

44 Boötis near periastron definitely qualifies. As of this writing, our ‘cardboard interferometer’ is still very much a work in progress. We could envision a more complex version of this rig mechanized, complete with video analysis. Hey, if nothing else, it really draws stares from fellow amateur astronomers…

We promise to delve into the exciting realm of backyard cardboard interferometry once we’ve worked all of the bugs out. In the meantime, be sure to regale us with your tales of tragedy and triumph observing 44 Boötis. Revisiting double stars can pose a life-long pursuit!

– Be sure to check out another double star challenge from Universe Today, with the hunt for Sirius B.

Cassini’s Farewell Look at Dione

Credit:

NASA’s Cassini spacecraft paid a visit to Saturn’s moon Dione this week, one final time.

Cassini passed just 474 kilometers (295 miles) above the surface of the icy moon on Monday, August 17th at 2:33 PM EDT/18:33 UT. The flyby is the fifth and final pass of Cassini near Dione (pronounced dahy-OH-nee). The closest passage was 100 kilometers (60 miles) in December 2011.  This final flyby of Dione will give researchers a chance to probe the tiny world’s internal structure, as Cassini flies through the gravitational influence of the moon. Cassini has only gathered gravity science data on a handful of Saturn’s 62 known moons.

“Dione has been an enigma, giving hints of active geologic processes, including a transient atmosphere and evidence of ice volcanoes. But we’ve never found the smoking gun,” said Cassini science team member Bonnie Buratti in a recent press release. “The fifth flyby of Dione will be the last chance.”

Credit
A map of Dione. Click here for a full large .pdf map. Credit: USGS

Voyager 1 gave us our very first look at Dione in 1980, and Cassini has explored the moon in breathtaking detail since its first flyby in 2005. This final pass targeted Dione’s north pole at a resolution of only a few meters. Cassini’s Infrared Spectrometer was also on the lookout for any thermal anomalies, a good sign that Dione may still be geologically active. The spacecraft’s Cosmic Dust Analyzer also carried out a search for any dust particles coming from Dione. The results of these experiments are forthcoming. In a synchronous rotation, Dione famously displays a brighter leading hemisphere, which has been pelted with E Ring deposits.

Credit
Dione (center) with Enceladus(smaller and to the upper right)  in the distance. Image credit: NASA/JPL-Caltech/Space Science Institute

The raw images from this week’s flyby are now available on the NASA Cassini website. You can see the sequence of the approach, complete with a ‘photobomb’ of Saturn’s moon Enceladus early on. Dione then makes a majestic pass in front of Saturn’s rings and across the ochre disk of the planet itself, before snapping into dramatic focus.  Here we see the enormous shattered Evander impact basin near the pole of Dione, along with Erulus crater with a prominent central peak right along the day/night terminator. Dione has obviously had a battered and troubled past, one that astro-geologists are still working out. Cassini then takes one last shot, giving humanity a fitting final look at Dione as a crescent receding off in the distance.

Credit
Dione in profile against Saturn. Image credit: NASA/JPL-Caltech/Space Science Institute

It’ll be a long time before we visit Dione again.

“This will be our last chance to see Dione up close for many years to come,” said Cassini mission deputy project scientist Scott Edgington. “Cassini has provided insights into this icy moon’s mysteries, along with a rich data set and a host of new questions for scientists to ponder.”

Cassini also took a distant look at Saturn’s tiny moon Hyrrokkin (named after the Norse giantess who launched Baldur’s funeral ship) earlier this month. Though not a photogenic pass, looking at the tinier moons of Saturn helps researchers better understand and characterize their orbits. Even after more than a decade at Saturn, there are tiny moons of Saturn that Cassini has yet to see up close.

Credit
The limb of Dione on close approach. Image credit: NASA/JPL-Caltech/Space Science Institute

Next up for Cassini is a pass 1,036 kilometers (644 miles) from the surface of Titan on September 28th, 2015.

Launched in 1997, Cassini has given us over a decade’s worth of exploration of the Saturnian system, including the delivery of the European Space Agency’s Huygens lander to the surface of Titan. The massive moon may be the target of a proposed mission that could one day sail the hazy atmosphere of Titan, complete with a nuclear plutonium powered MMRTG and deployable robotic quadcopters.

Cassini is set to depart the equatorial plane of Saturn late this year, for a series of maneuvers that will feature some dramatic passes through the rings before a final fiery reentry into the atmosphere of Saturn in 2017.

Credit
A farewell look at Dione. Image credit: NASA/JPL-Caltech/Space Science Institute

Astronomer Giovanni Cassini discovered Dione on March 21st, 1684 from the Paris observatory using one of his large aerial refracting telescopes. About 1,120 kilometers in diameter, Dione is 1.5% as massive as Earth’s Moon. Dione orbits Saturn once every 2.7 days, and is in a 1:2 resonance with Enceladus, meaning Dione completes one orbit for every two orbits of Enceladus.

In a backyard telescope, Dione is easily apparent along with the major moons of Saturn as a +10.4 magnitude ‘star.’ Saturn is currently a fine telescopic target in the evening low to the south on the Libra-Scorpius border, offering prime time observers a chance to check out the ringed planet and its moons. Fare thee well, Dione… for now.

Watch HTV-5 Chase the International Space Station From Your Backyard

A JAXA H-IIB rocket departs Tanegashima Space Center in a dramatic night shot. Image credit: JAXA/NASA TV

It’s away… and the hunt is on. The Japanese Space Agency’s H-II Transfer Vehicle Kounotori automated cargo spacecraft rocketed out of the Tanegashima Space Center today, headed for the ISS.

Loaded with over 6,000 kilograms of experiments and supplies, HTV-5 is on a five day odyssey that you can follow from your backyard, starting tonight. Kounotori stands for ‘white stork,’ or the purveyor of joyful things in Japanese, and in this instance, the name is appropriate, as the HTV-5 is delivering much needed supplies to the International Space Station.

Credit
HTV-5 during encapsulation. Credit: JAXA

Launch occurred this morning at 11:50 UT/7:50 AM EDT, hitting an instantaneous window to chase after the International Space Station for grapple and berthing on Monday.

Unlike the Progress and Soyuz spacecraft, which have the capability to rendezvous and dock with the ISS, the HTV-5 and Dragon spacecraft are grappled with the Canadian Space Agency’s Canadarm 2,  and stowed or ‘berthed’ in place.

Grapple with berthing to the nadir node of the Harmony module is set for Monday, August 24th, at 11:54 UT/7:54 AM EDT.

Unlike other vehicles that periodically visit the International Space Station, the HTV does not incorporate deployable solar panels, but instead, has panels wrapped around its body. This can also lend itself to some pretty bright flares as it passes overhead.

Grapple of HTV-4 by the Canadarm 2. Image credit: NASA/JAXA
Grapple of HTV-4 by the Canadarm 2. Image credit: NASA/JAXA

The H-IIB is a two stage rocket, and ground observers should keep an eye out for the second stage booster during ISS passes as well. Debris was also jettisoned during last weeks’ spacewalk, and there’s no word as of yet if this has reentered as well, though ground-spotters have yet to report any sightings. This is a typical EVA maneuver, and cosmonauts conducted the release in such a fashion as to pose no danger to the ISS or HTV. Debris jettisoned from the ISS typically reenters the Earth’s atmosphere after about a week or so.

Prospects for Seeing HTV-5 this Weekend

Grapple of the HTV-5 will occur Monday over central Asia. Keep in mind, the HTV-5 will have to perform several burns to reach the elevation of the ISS: this means its orbit will evolve daily. Heavens-Above and NASA’s Spot the Station tracker typically publish sighting predictions for cargo vehicles such as the HTV-5 along with ISS sighting opportunities online.

And we’ll be posting daily updates and maps as @Astroguyz on Twitter. We see the best prospects for spotting the ISS and HTV5 over the next few days leading up to Monday’s berthing are for latitudes 25-45 north (dusk) and latitudes 30-50 south (dawn). That covers a wide range of observers in Europe, North America, South Africa and Australia/New Zealand.

A capture of the passage of HTV-4. Image credit and copyright: Fred Locklear
A capture of the passage of HTV-4. Image credit and copyright: Fred Locklear

We’ve caught sight of JAXA’s HTV on previous missions, and contest to it being a conspicuous object.

Pro-tip: the trick to a successful sighting is to start watching early. The HTV-5 will be fainter than the brilliant ISS, but still visible to the naked eye at about magnitude +1 to +2 or so when directly overhead. The HTV-5 will follow the same orbital trace as the station. Spot the ISS and still don’t see HTV-5? Linger for a bit and keep watching after the ISS has passed, as the HTV might follow shortly. And the darker the skies you can find to carry out your HTV-5 vigil under, the better!

Aug 19
Initial estimations for the passage of the HTV-5 about 10 minutes ahead of the ISS on Wednesday, August 19th. Image credit: Orbitron

Here’s a sampling of ISS passes for Washington D.C. for the next few days:

Wednesday, August 19th: 8:46 PM EDT (Elevation 65 degrees NE)

Thursday, August 20th: 9:29 PM EDT (Elevation 23 degrees SW)

Friday, August 21st: 8:35 PM EDT (Elevation 48 degrees SW)

Clouded out? You can still watch the grapple and berthing action online courtesy of NASA TV.

Want more? Other orbital alumni that have placed a port of call at humanity’s orbital outpost include: SpaceX’s Dragon, the U.S. Space Shuttle fleet (excepting the Columbia orbiter), Progress, ATV, HTV, Soyuz, and Orbital Science’s Cygnus spacecraft. And while the shuttle and the European Space Agency’s ATV fleet are retired, you can follow the next launch of a crewed Soyuz (TMA-18M) on September 2nd from the Baikonur Cosmodrome on a four-orbit fast-track docking.

JAXA plans to launch one HTV a year, out to HTV-9 in 2019.

Good luck, and good sat-spotting… next time we park the Jeep Liberty in the garage, we’re going to refer to it as a ‘grapple and berthing…’ it just sounds cool.

Got a picture of the International Space Station and friends? Be sure to send ‘em in to Universe Today.

Late Summer Tales of Tanabata

The August Milky Way graced with the occasional Perseid. Image credit: Andre van der Hoeven

One of the surest signs that late summer is here in the northern hemisphere is the arrival of the Milky Way in the early evening sky. As darkness falls ever earlier each night, the star-dappled plane of our home galaxy sits almost due south and stretches far to the north. This is also why we refer to the triangular shaped asterism formed by the bright stars of Altair, Deneb and Vega as the Summer Triangle. Two of these stars are the focus of a fascinating mythos from the Far East, and a poetic celestial configuration that commemorates star-crossed lovers lost.

We first heard of tales of Tanabata while stationed in Japan in the U.S. Air Force. Meaning ‘the seventh evening of the seventh month’ — sometimes simply abbreviated to ‘the seventh-seventh,’ — Tanabata is the summer Star Festival of Japan and dates back to about the 7th century AD. Korean and Chinese cultures also have a version of the tale, and the festival that was once considered a rite for the elite gained popularity during the Edo period in the 17th century to become a nationwide celebration.

Tanabata 2010. Wikimedia Commons/Hanasakijijii/3.0 license
Tanabata 2010. Wikimedia Commons/Hanasakijijii/3.0 license

The origin story of Tanabata involves the romance between the weaver’s daughter Orihime and the cow-herder’s son Kengyuu. As lovers will do, both began to neglect family duties — namely, weaving and cow-herding — until the two were separated by Orihime’s father, Tentei, represented by the Pole Star Polaris. The vast river of heaven, represented by the Milky Way, now separates the two. Orihime (Vega) sits on one side, while Kengyuu (Altair) is alone and unreachable on the other. The Emperor relented to Orihime’s pleading, however, and allows the two to meet once a year, on the seven day of the seventh month. And thus, Tanabata was born.

In late August, Vega and Altair are easily visible high to the east at dusk. You’re looking out along the Orion Spur — of which our solar system is a member — which traverses the Perseus and Cygnus arms of the galaxy beyond. We’re headed roughly in the same direction, towards a point known as the solar apex which is located near the bright star Vega, 25 light years distant. Remember the movie Contact? Vega was the fictional source of an extraterrestrial signal detected by Jodi Foster in the film.

our location in the Orion Spur of the Milky Way galaxy. image credit: Roberto Mura/Public Domain
You are here: our location in the Orion Spur of the Milky Way galaxy. Image credit: Roberto Mura/Public Domain

The modern Japanese calendar actually marks Tanabata on several different dates. The timing of the festival can vary from village to village, depending on which local convention is observed.

The original Japanese calendar was lunisolar, and very similar in convention to the modern Chinese festival calendar. A lunisolar calendar attempts to keep the cycles of the synodic period (29.5 days) of the Moon in sync with the solar calendar year, and must add an extra lunar month every 2-3 years to keep up. The modern Jewish calendar is another example of a lunisolar calendar, whereas the Islamic calendar follows the cycles of the Moon only.

The Summer Triangle. Image credit: Stellarium
The Summer Triangle. Image credit: Stellarium

Modern Japan has adapted the western Gregorian calendar, which is exclusively solar and reconciles the tropical and sidereal periods of the Sun. Though Tanabata was traditionally held in August, many Japanese communities simply transcribe the ‘seventh day of the seventh month’ onto the modern Gregorian calendar to mean July 7th. Still other villages use the ‘one-month delay’ rule, to center Tanabata on August 7th.

Some rural villages, however, still use the older lunisolar custom. By this reckoning, Tanabata always falls seven days after the New Moon at the end of seven full lunar cycles, when the Moon is a fat crescent not quite at first Quarter phase.

A table for future dates of Tanabata using the traditional lunisolar calendar for the next decade. Image credit: Dave Dickinson
A table for future dates of Tanabata using the traditional lunisolar calendar for the next decade. Image credit: Dave Dickinson

In 2015, this happens this Thursday on August 20th. Like Easter, Tanabata can fall early or late by about one lunar cycle, the earliest being August 1st, which happens on 2014 and 2033, and the latest being August 30th, which happens on 2006 and 2044.

Think of the crescent Moon as the boat, which once a year, brings the two lovers together across the celestial river of the Milky Way.

Late to the party? the waxing crescent Moon versus the plane of the galaxy on the evening of August 20th, 2015. Image credit: Starry Night Education Software
Late to the party? the waxing crescent Moon versus the plane of the galaxy on the evening of August 20th, 2015. Image credit: Starry Night Education Software (Click image to enlarge)

You may notice on the evening of the 20th that the boat no longer makes its portage to the river, completing the scene. In fact, the cosmic lineup of the Milky Way and the fat waxing crescent Moon is now more of a September/October affair. What gives?   Well, they once did align, way back when Tanabata first became a tradition over a millennia ago.

Blame our friend, the Precession of the Equinoxes for conspiring to keep our happy couple apart. The 26,000-odd year wobble is enough to move the equinoctial points about one degree along the ecliptic during a normal 70 year human life span. That all adds up, making the ferryman about one synodic period late to the party in modern times.

Enjoy the show, and happy Tanabata, whenever you may celebrate it in space and time.