NASA to BEAM Up Inflatable Space Station Module

by Nancy Atkinson on January 16, 2013

Want to stay on top of all the space news? Follow @universetoday on Twitter

NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing on , Jan. 16, 2013. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing on , Jan. 16, 2013. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

More details have emerged on NASA’s plan to add the first commercial module to the International Space Station, an inflatable room built by Bigelow Aerospace. The Bigelow Expandable Activity Module (BEAM), which is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. It will be delivered by another commercial company, SpaceX, on what is planned to be the eighth cargo resupply mission too the ISS for Dragon and the Falcon 9 rocket. Astronauts will use the station’s robotic arm to install the module on the aft port of the Tranquility node. NASA Deputy Administrator Lori Garver announced Wednesday NASA has awarded a $17.8 million contract to Bigelow Aerospace for BEAM.

“Today we’re demonstrating progress on a technology that will advance important long-duration human spaceflight goals,” Garver said. “NASA’s partnership with Bigelow opens a new chapter in our continuing work to bring the innovation of industry to space, heralding cutting-edge technology that can allow humans to thrive in space safely and affordably.”

BEAM is a cylindrical module, like all other ISS modules, and is about somewhat similar in size to the US Harmony module, as BEAM is about 4 meters (13 feet) long and 3.2 meters (10.5 feet) wide; Harmony 7.2 meters (24 ft) in length, and it has a diameter of 4.4 meters (14 ft). But weight is where the two vastly differ: Harmony weighs in 14,288 kilograms (31,500 lb), while BEAM weighs roughly 1,360 kg (3,000 pounds). And that is the big advantage of inflatable structures for use in space: their mass and volume are relatively small when launched, reducing launch costs.

The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls

The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls

Leonard David reports on Space.com that the BEAM module should be much quieter than the other modules due to the non-metallic nature of the structure.

Read: Sounds of the Space Station

After the module is berthed to the Tranquility node, the station crew will activate a pressurization system to expand the structure to its full size using air stored within the packed module.

During the two-year test period, station crew members and ground-based engineers will gather performance data on the module, including its structural integrity and leak rate. An assortment of instruments embedded within module also will provide important insights on its response to the space environment. This includes radiation and temperature changes compared with traditional aluminum modules.

BEAM will also be assessed for future habitats for long-duration space missions, said Bill Gerstenmaier, associate administrator for human exploration and operations at NASA.

Watch how the BEAM module will be attached and inflated:

Astronauts periodically will enter the module to gather performance data and perform inspections. Following the test period, the module will be jettisoned from the station, and will burn up on re-entry.

Bigelow Aerospace says the BEAM 330 module can function as an independent space station, or several of the inflatable habitats can be connected together in a modular fashion to create an even larger and more capable orbital space complex.

Bigelow also lists their radiation shielding as equivalent to or better than the other modules on the International Space Station and substantially reduces the dangerous impact of secondary radiation, while their innovative Micrometeorite and Orbital Debris Shield “provides protection superior to that of the traditional ‘aluminum can’ designs, according to the Bigelow Aerospace website.

The BEAM module docked at the International Space Station. Credit: NASA.

The BEAM module docked at the International Space Station. Credit: NASA.

Find out how Bigelow Aerospace's BEAM expandable module will enhance the living area of the International Space Station, in this SPACE.com infographic.
Source SPACE.com.

About 

Nancy Atkinson is Universe Today's Senior Editor. She also is the host of the NASA Lunar Science Institute podcast and works with Astronomy Cast. Nancy is also a NASA/JPL Solar System Ambassador.

Orville January 16, 2013 at 11:40 PM

Jiffy-POP-corn ;)

NancyAtkinson January 17, 2013 at 2:21 AM

Oh my, that’s exactly what it looks like!

Jeffrey Scott Boerst January 17, 2013 at 11:33 PM

you’re just jealous, Mr. Redenbacher…

Simon Donaldson January 16, 2013 at 11:49 PM

$17.8 million… Damn, that’s cheap :P

Bobby Hudson January 17, 2013 at 11:49 AM

This has been long overdue and is about time. With the Bigelow expandable units the ISS can be the station it was destined to be.Also,as in the illustration, a lunar outpost is feasible.

Jeffrey Scott Boerst January 17, 2013 at 11:31 PM

*…the BEAM module should be much quieter than the other modules due to the non-metallic nature of the structure*. Do the current modules/pods creak? What noises and how loud? Anyone know?

Aqua4U January 20, 2013 at 12:33 AM

Lets send the Alpha Station to orbit the moon!

Comments on this entry are closed.

Previous post:

Next post: